eSOMiMX7

Carrier Board Design Guide

Version 1.0 e-con Systems 5/2/2018

Disclaimer

e-con Systems reserves the right to edit/modify this document without any prior intimation of whatsoever.

Contents

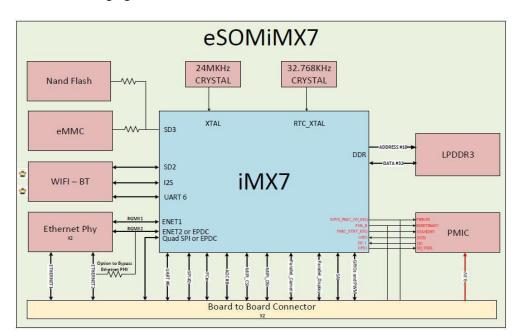
INTRODUCTION TO ESOMIMX7	5
ARCHITECTURE	6
NXP I.MX7 CPU	6
ON BOARD MEMORY	7
LPDDR3 SDRAM	7
EMMC OR NAND FLASH-STORAGE	7
DUAL 10/100/1GBPS ETHERNET PHY TRANSCEIVER	7
WI-FI AND BLUETOOTH COMBO	7
PIN NUMBERING	8
INTERFACE	13
MIPI DSI	13
MIPI DSI Signals	14
REFERENCE SCHEMATICS AND LAYOUT GUIDELINES	14
UNUSED MIPI DSI SIGNALS TERMINATION	15
PARALLEL DISPLAY	15
PARALLEL DISPLAY SIGNALS	15
COLOUR MAPPING	16
PARALLEL DISPLAY INTERFACE SIGNALS TIMING DETAILS	17
LAYOUT GUIDELINES	17
UNUSED PARALLEL DISPLAY SIGNALS TERMINATION	17
ELECTROPHORETIC DISPLAY	18
ELECTROPHORETIC DISPLAY SIGNALS	18
EPDC INTERFACE SIGNALS TIMING DETAILS	19
UNUSED ELECTROPHORETIC DISPLAY SIGNALS TERMINATION	22
MIPI CSI	22
MIPI CSI SIGNALS	22
REFERENCE SCHEMATICS AND LAYOUT GUIDELINES	22
UNUSED MIPI CSI SIGNALS TERMINATION	23
PARALLEL CAMERA	23
PARALLEL CAMERA SIGNALS	24
UNUSED PARALLEL CAMERA SIGNALS TERMINATION	24
GIGABIT ETHERNET	24
GIGABIT ETHERNET SIGNALS	25
ETHERNET REFERENCE SCHEMATICS AND LAYOUT GUIDELINES	26
UNUSED ETHERNET SIGNALS TERMINATION	28
UNIVERSAL SERIAL BUS (USB)	28

208	
UNIVERSAL SERIAL BUS SIGNALS	29
Reference Schematics and Layout Guidelines	29
UNUSED UNIVERSAL SERIAL BUS SIGNALS TERMINATION	31
PCIE	31
PCI Express Interface Signals	31
REFERENCE SCHEMATICS AND LAYOUT GUIDELINES	32
UNUSED PCIE INTERFACE SIGNALS TERMINATION	32
USDHC INTERFACE	32
USDHC SIGNALS	33
USDHC INTERFACE SIGNALS TIMING DETAILS	35
UNUSED USDHC SIGNALS TERMINATION	36
SYNCHRONOUS AUDIO INTERFACE (SAI)	36
SAI Signals	36
SAI INTERFACE SIGNALS TIMING DETAILS	37
UNUSED SYNCHRONOUS AUDIO INTERFACE SIGNALS TERMINATION	38
UART INTERFACE	38
UART INTERFACE SIGNALS	38
UART INTERFACE SIGNALS TIMING DETAILS	39
UNUSED UART INTERFACE SIGNALS TERMINATION	40
I2C INTERFACE	40
I2C INTERFACE SIGNALS	41
REFERENCE SCHEMATICS	41
I2C INTERFACE SIGNALS TIMING DETAILS	42
UNUSED I2C INTERFACE SIGNALS TERMINATION	43
FLEXCAN INTERFACE	43
FLEXCAN INTERFACE SIGNALS	44
REFERENCE SCHEMATICS	44
UNUSED FLEXCAN INTERFACE SIGNALS TERMINATION	44
ENHANCED CONFIGURABLE SPI INTERFACE	44
ECSPI INTERFACE SIGNALS	45
ECSPI INTERFACE SIGNALS TIMING DETAILS	45
UNUSED ECSPI INTERFACE SIGNALS TERMINATION	47
QUAD SERIAL PERIPHERAL INTERFACE	47
QSPI INTERFACE SIGNALS	48
QUAD SPI INTERFACE SIGNALS TIMING DETAILS	48
UNUSED QUAD SPI INTERFACE SIGNALS TERMINATION	50
Pulse Width Modulation	50
Pulse Width Modulation Signals	50
Pulse Width Modulation Signals Timing Details	51
UNUSED PULSE WIDTH MODULATION SIGNALS TERMINATION	51
UNUSED ANALOG INPUT SIGNALS TERMINATION	52
POWER AND CONTROL	53

POWER AND CONTROL SIGNALS	53
BOOT OPTIONS	53
CPU ONOFF	53
Power on Sequence	54
CPU RESET	54
GLOSSARY	56
SUPPORT	59

Introduction to eSOMiMX7

e-con Systems has developed an ultra-low power Computer/System-On-Module eSOMiMX7, based on NXP[®]/NXP i.MX 7 embedded System on Chip (SoC) with the basic peripherals in a compact form factor. The SoC features a single or dual-core ARM[®] Cortex[®] A7 processor with an additional ARM Cortex M4 processor. The eSOMiMX7 has iMX7 CPU running up to 1 GHz – Dual/Solo Core, LPDDR3-1066 SDRAM configurable up to 2 GB and eMMC configurable up to 64 GB (Only for Dual Core) or a NAND Flash configurable up to 4 GB. The eSOMiMX7 module also has the Wireless LAN and Bluetooth module.


This eSOMiMX7 is powered by Linux. As part of the Productized Services program of e-con Systems, the eSOMiMX7 is aimed at reducing the time-to-market for our customers by making use of the stabilized and ready-to-market eSOMiMX7 modules in the customer applications. Being offered in a compact form factored modules with various configurations and OS support, these modules will enable our customers to focus on their application design. This enables customers to build variety of base boards targeting various applications with a host of peripherals and interfaces.

The module delivers state of the art technology, targeting low power systems that still require high CPU Performance. It also offers all the interfaces needed in a modern embedded device. It offers a wide range of interfaces from simple GPIOs, industry standard I2C, SPI, CAN, and UART buses to high-speed USB 2.0 interfaces. Besides the internal Flash Memory, there are several interfaces available for data storage such as SD memory card. The CPU board also exposes the complete range of interfaces provided by the iMX7 Application Processor through its connectors so that the customers can access the complete functionality.

e-con Systems has a base board named Acacia built around eSOMiMX7 for evaluation. The Acacia base board will be available for customers with complete source code and other design inputs such as schematics, DXF etc. The complete features of eSOMiMX7 and a variety of add-on modules supported by e-con Systems are available on our website www.e-consystems.com. Interested customers can also write to sales@e-consystems.com asking for specific details.

The scope of this document is to detail all the technical details of the module from the hardware design perspective. This document will serve as a single point of reference for hardware design of the customer application using eSOMiMX7. This will provide the necessary details for the customers to integrate our eSOMiMX7 with their application board design. The schematic designer and layout designer would find this document useful.

The following figure shows the basic architecture of the eSOMiMX7 module.

Figure 1: Sample Architecture of eSOMiMX7 Module

The main hardware blocks of eSOMiMX7 are as follows:

- NXP i.MX7 CPU
- On Board Memory
- Dual 10/100/1Gbps Ethernet PHY Transceiver
- Wi-Fi + Bluetooth Combo

The following sections describe each of the main hardware blocks in detail.

NXP i.MX7 CPU

eSOMiMX7 is based on NXP's i.MX7 Dual/Solo ARM[™] Cortex-A7 core-based CPU which can operate up to 1 GHz speed per core in the case of Dual core and up to 800 MHz in the case of Solo core.

For more information about the features, please refer to the following documents from NXP:

- eSOMiMX7 Datasheet
- User Manual
- Application Notes

On Board Memory

The on-board memory types available in eSOMiMX7 are as follows:

- LPDDR3 SDRAM
- eMMC or NAND Flash-storage

LPDDR3 SDRAM

eSOMiMX7 supports the on-board memory of up to 2 GB. The iMX7 LPDDR3 interfaces up to 32-bits wide and operates at 533 MHz clock frequency.

eMMC or NAND Flash-Storage

eSOMiMX7 is available with 4GB of eMMC memory. This memory can be used for porting OS image that is user defined storage and expandable up to 32 GB.

Note: Only the Dual core version supports eMMC.

eSOMiMX7 is available with NAND Flash as an alternate to the eMMC in the Solo version of the SOM. NAND Flash can be expandable up to 4 GB.

Dual 10/100/1Gbps Ethernet PHY Transceiver

eSOMiMX7 features two gigabit Ethernet PHY. eSOMiMX7 can support (10Base-T/100Base-TX/1000Base-T) for transmission and reception of data over standard CAT-5 unshielded twisted pair (UTP) cable.

Note: Solo processor and Dual core processor with EPDC interface will support only one Ethernet interface.

Wi-Fi and Bluetooth Combo

eSOMiMX7 contains Wi-Fi and Bluetooth module with the following features:

- IEEE STD 802.11a/b/g/n
- Bluetooth 4.1 and CSA2 Support
- Dual-Mode Bluetooth and BLE
- FCC certified module.

There are two on-Board UFL Connectors to which external antennas need to be connected. The recommended Antennas are shown in the following table.

S.No	Part Number	Manufacturer
1	001-0012 , 080-0013	Laird – Wireless & Thermal solutions
2	CAF94505	Laird Technologies

Table 1: Recommended Antennas

Pin Numbering

The SOM is provided with two board to board connectors on the bottom side. Each connector consists of a hundred pin, summing up to a total of two hundred pins for both the connectors. The pin number increases linearly with even numbers on one side and odd numbers on the other side of each connector. The following figure shows the sample pin numbering schema of the module.

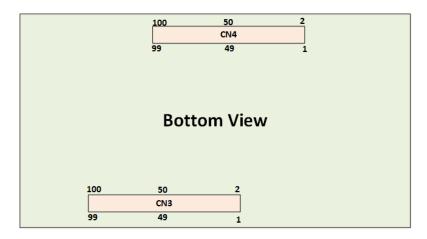


Figure 2: Sample Pin Numbering Schema bottom side of Module

The connector used in eSOMiMX7 is as follows:

- Manufacturer Part Number: DF40C-100DP-0.4V(51)
- Manufacturer: Hirose Electric Co Ltd

The recommended mating connector for eSOMiMX7 is as follows:

- Manufacturer Part Number: DF40HC(3.0)-100DS-0.4V(51)
- Manufacturer: Hirose Electric Co Ltd

Table 2: eSOMiMX7 Connector Pin Out

			iMX7		
CONN NO	Pin No	Pin Name	Ball No	iMX7 Ball Name	IO Level
3	1	iMX7_CONN_QSPI_A_DATA0	P20	EPDC1_DATA00	3.3V
3	2	iMX7_CONN_QSPI_B_DATA0	M23	EPDC1_DATA08	3.3V
3	3	iMX7_CONN_QSPI_A_DATA3	N21	EPDC1_DATA03	3.3V
3	4	iMX7_CONN_QSPI_B_SS0_B	L20	EPDC1_DATA14	3.3V
3	5	iMX7_CONN_QSPI_A_DATA1	P21	EPDC1_DATA01	3.3V
3	6	iMX7_CONN_QSPI_B_DQS	L22	EPDC1_DATA12	3.3V
3	7	iMX7_CONN_QSPI_A_SS0_B	M21	EPDC1_DATA06	3.3V
3	8	iMX7_CONN_QSPI_B_DATA1	L25	EPDC1_DATA09	3.3V
3	9	iMX7_CONN_QSPI_A_DATA2	N20	EPDC1_DATA02	3.3V
3	10	iMX7_CONN_QSPI_B_DATA2	L24	EPDC1_DATA10	3.3V
3	11	iMX7_CONN_QSPI_A_DQS	N22	EPDC1_DATA04	3.3V
3	12	iMX7_CONN_QSPI_B_SS1_B	K25	EPDC1_DATA15	3.3V

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	iMX7_CONN_QSPI_A_SCLKiMX7_CONN_QSPI_B_DATA3iMX7_CONN_QSPI_A_SS1_BiMX7_CONN_QSPI_B_SCLKGROUNDETHERNET_P2_ACTiMX7_CONN_EPDC_PWRCOMETHERNET_P2_LED_1000MiMX7_CONN_EPDC_PWRSTATETHERNET_P2_LED_100MiMX7_CONN_EPDC_BDR1CONN_RGMII2_RXD3	M20 L23 M22 L21 J21 H24 J20 K20 H21	EPDC1_DATA05 EPDC1_DATA11 EPDC1_DATA07 EPDC1_DATA13 EPDC1_SDCLK * EPDC1_SDCLK * EPDC1_SDLE * EPDC1_PWRSTAT	3.3V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V
3 15 1 3 16 1 3 17 1 3 18 1 3 19 1 3 20 1 3 21 1 3 22 1 3 23 1 3 23 1	iMX7_CONN_QSPI_A_SS1_B iMX7_CONN_QSPI_B_SCLK GROUND ETHERNET_P2_ACT iMX7_CONN_EPDC_PWRCOM ETHERNET_P2_LED_1000M iMX7_CONN_EPDC_PWRSTAT ETHERNET_P2_LED_100M iMX7_CONN_EPDC_BDR1	M22 L21 J21 H24 J20 K20	EPDC1_DATA07 EPDC1_DATA13 EPDC1_SDCLK * EPDC1_PWRCOM EPDC1_SDLE *	3.3V 3.3V 3.3V 3.3V 3.3V
3 16 1 3 17 1 3 18 1 3 19 1 3 20 1 3 21 1 3 22 1 3 23 1 3 23 1 3 24 1	iMX7_CONN_QSPI_B_SCLK GROUND ETHERNET_P2_ACT iMX7_CONN_EPDC_PWRCOM ETHERNET_P2_LED_1000M iMX7_CONN_EPDC_PWRSTAT ETHERNET_P2_LED_100M iMX7_CONN_EPDC_BDR1	L21 J21 H24 J20 K20	EPDC1_DATA13 EPDC1_SDCLK * EPDC1_PWRCOM EPDC1_SDLE *	3.3V 3.3V 3.3V 3.3V
3 17 17 3 18 18 3 19 19 3 20 1 3 21 1 3 22 1 3 23 1 3 23 1 3 24 1	GROUND ETHERNET_P2_ACT iMX7_CONN_EPDC_PWRCOM ETHERNET_P2_LED_1000M iMX7_CONN_EPDC_PWRSTAT ETHERNET_P2_LED_100M iMX7_CONN_EPDC_BDR1	J21 H24 J20 K20	EPDC1_SDCLK * EPDC1_PWRCOM EPDC1_SDLE *	3.3V 3.3V
3 18 3 19 3 20 3 21 3 22 3 23 3 24	ETHERNET_P2_ACT iMX7_CONN_EPDC_PWRCOM ETHERNET_P2_LED_1000M iMX7_CONN_EPDC_PWRSTAT ETHERNET_P2_LED_100M iMX7_CONN_EPDC_BDR1	H24 J20 K20	EPDC1_PWRCOM EPDC1_SDLE *	3.3V
3 19 1 3 20 1 3 21 1 3 22 1 3 23 1 3 23 1 3 24 1	iMX7_CONN_EPDC_PWRCOM ETHERNET_P2_LED_1000M iMX7_CONN_EPDC_PWRSTAT ETHERNET_P2_LED_100M iMX7_CONN_EPDC_BDR1	H24 J20 K20	EPDC1_PWRCOM EPDC1_SDLE *	3.3V
3 20 3 21 3 22 3 23 3 24	ETHERNET_P2_LED_1000M iMX7_CONN_EPDC_PWRSTAT ETHERNET_P2_LED_100M iMX7_CONN_EPDC_BDR1	J20 K20	 EPDC1_SDLE *	+
3 21 1 3 22 1 3 23 1 3 24 1	iMX7_CONN_EPDC_PWRSTAT ETHERNET_P2_LED_100M iMX7_CONN_EPDC_BDR1	К20		3.3V
3 22 3 23 3 24	ETHERNET_P2_LED_100M iMX7_CONN_EPDC_BDR1		EPDC1_PWRSTAT	1
3 23 3 24	iMX7_CONN_EPDC_BDR1	H21		0.01/
3 24			EPDC1_SDOE *	3.3V
	CONN_RGMII2_RXD3	K23	EPDC1_BDR1	3.3V
		H20	EPDC1_SDSHR *	3.3V
	iMX7_CONN_EPDC_BDR0	K24	EPDC1_BDR0	3.3V
	GROUND			
	iMX7_LCD_ENABLE	F25	LCD1_ENABLE	1.8V
	CLK_iMX7_LCD_CLK	E20	LCD1_CLK	1.8V
	LCD1_DATA11	G20	LCD1_DATA11	1.8V
	GROUND			
	LCD1_DATA17	G21	LCD1_DATA17	1.8V
	LCD1_DATA12	F21	LCD1_DATA12	1.8V
	LCD1_DATA23	G23	LCD1_DATA23	1.8V
	LCD1_DATA08	E21	LCD1_DATA08	1.8V
	LCD1_DATA07	F20	LCD1_DATA07	1.8V
	LCD1_DATA00	D21	LCD1_DATA00	1.8V
	GROUND			
3 38	LCD1_DATA04	C22	LCD1_DATA04	1.8V
	iMX7_LCD_HSYNC	E25	LCD1_HSYNC	1.8V
	LCD1_DATA02	B22	LCD1_DATA02	1.8V
3 41	iMX7_LCD_VSYNC	F24	LCD1_VSYNC	1.8V
	LCD1_DATA15	C24	LCD1_DATA15	1.8V
	LCD1_DATA14	D23	LCD1_DATA14	1.8V
3 44	GROUND			
3 45	LCD1_DATA09	C23	LCD1_DATA09	1.8V
3 46	LCD1_DATA18	E23	LCD1_DATA18	1.8V
3 47	LCD1_DATA22	D25	LCD1_DATA22	1.8V
3 48	LCD1_DATA13	E22	LCD1_DATA13	1.8V
3 49	LCD1_DATA10	B24	LCD1_DATA10	1.8V
3 50	LCD1_DATA21	E24	LCD1_DATA21	1.8V
3 51	LCD1_DATA20	C25	LCD1_DATA20	1.8V
3 52	LCD1_DATA19	D24	LCD1_DATA19	1.8V
3 53	LCD1_DATA05	B23	LCD1_DATA05	1.8V
3 54	LCD1_DATA01	A22	LCD1_DATA01	1.8V
3 55	LCD1_DATA06	A24	LCD1_DATA06	1.8V
3 56	LCD1_DATA16	B25	LCD1_DATA16	1.8V
3 57	LCD1_DATA03	A23	LCD1_DATA03	1.8V
3 58	 IMX7_CONN_LCD_RESET	C21	LCD1_RESET	1.8V
3 59	GROUND			
	GROUND			
	MIPI_DSI_D0_P_IMX7_CONN	B20	MIPI_DSI_D0_P	
	MIPI_CSI_D0_P_IMX7_CONN	B16	MIPI CSI DO P	1

				2 H N	
3	63	MIPI_DSI_D0_N_IMX7_CONN	A20	MIPI_DSI_D0_N	
3	64	MIPI_CSI_D0_N_IMX7_CONN	A16	MIPI_CSI_D0_N	
3	65	GROUND			
3	66	GROUND			
3	67	MIPI_DSI_CLK_P_IMX7_CONN	B19	MIPI_DSI_CLK_P	
3	68	MIPI_CSI_CLK_P_IMX7_CONN	B15	MIPI_CSI_CLK_P	
3	69	MIPI_DSI_CLK_N_IMX7_CONN	A19	MIPI_DSI_CLK_N	
3	70	MIPI_CSI_CLK_N_IMX7_CONN	A15	MIPI_CSI_CLK_N	
3	71	GROUND			
3	72	GROUND			
3	73	MIPI_DSI_D1_P_IMX7_CONN	B18	MIPI_DSI_D1_P	
3	74	MIPI_CSI_D1_P_IMX7_CONN	B14	MIPI_CSI_D1_P	
3	75	MIPI_DSI_D1_N_IMX7_CONN	A18	MIPI_DSI_D1_N	
3	76	MIPI_CSI_D1_N_IMX7_CONN	A14	MIPI_CSI_D1_N	
3	77	GROUND			
3	78	GROUND			
3	79	P1MDIDN			
3	80	P2MDIBN	H23	EPDC1_SDCE2 *	3.3V
3	81	P1MDIDP			
3	82	P2MDIBP	H22	EPDC1_SDCE3 *	3.3V
3	83	GROUND			
3	84	GROUND			
3	85	P1MDIBN			
3	86	P2MDIAP	J25	EPDC1_GDCLK *	3.3V
3	87	P1MDIBP			
3	88	P2MDIAN	J24	EPDC1_GDOE *	3.3V
3	89	GROUND			
3	90	GROUND			
3	91	P1MDICN			
3	92	P2MDICP	H25	EPDC1_GDSP *	3.3V
3	93	P1MDICP			
3	94	P2MDICN	K21	EPDC1_GDRL *	3.3V
3	95	GROUND			
3	96	GROUND			
3	97	P1MDIAN			
3	98	P2MDIDP	G24	EPDC1_SDCE1 *	3.3V
3	99	P1MDIAP			
3	100	P2MDIDN	G25	EPDC1_SDCE0 *	3.3V
4	1	VCC_LICELL			
4	2	VCC_3P3_IN			
4	3	GROUND			
4	4	VCC_3P3_IN			
4	5	PCIe_RX_N_iMX7_CONN	AE11	PCIE_RX_N	
4	6	VCC_3P3_IN			
4	7	PCIe_RX_P_iMX7_CONN	AD11	PCIE_RX_P	
4	8	VCC_3P3_IN			
4	9	GROUND			
4	10	VCC_3P3_IN			
4	11	PCIe_TX_N_iMX7_CONN	AC11	PCIE_TX_N	
4	12	VCC_3P3_IN			

4	13	PCle_TX_P_iMX7_CONN	AB11	PCIE_TX_P	
4	14	VCC_3P3_IN			
4	15	GROUND			
4	16	VCC_3P3_IN			
4	17	CLK_PCIe_CLK_N_iMX7_CONN	AC10	PCIE_REFCLKOUT_N	
4	18	VCC_3P3_IN			
4	19	CLK_PCle_CLK_P_iMX7_CONN	AB10	PCIE_REFCLKOUT_P	
4	20	VCC_3P3_IN			
4	21	GROUND			
4	22	VCC_3P3_IN			
4	23	iMX7_CONN_TAMPER2	AB6	SNVS_TAMPER02	
4	24	GROUND			
4	25	iMX7_CONN_TAMPER1	Y8	SNVS_TAMPER01	
4	26	ADC1_IN2_IMX7_CONN	AE2	ADC1_IN2	1.8V
4	27	iMX7_CONN_TAMPER0	AA7	SNVS_TAMPER00	
4	28	ADC1_IN0_IMX7_CONN	AD1	ADC1_IN0	1.8V
4	29	VDD_SNVS_1P8_CAP			
4	30	ADC1_IN3_IMX7_CONN	AE3	ADC1_IN3	1.8V
4	31	CPU_ONOFF	AC8	ONOFF	
4	32	ADC1_IN1_IMX7_CONN	AD3	ADC1_IN1	1.8V
4	33	CPU_POR	R6	POR_B	
4	34	ADC2_IN0_IMX7_CONN	AC1	ADC2_IN0	1.8V
4	35	CPU_BOOT_MODE1	P5	BOOT_MODE1	1.8V
4	36	ADC2_IN1_IMX7_CONN	AC2	ADC2_IN1	1.8V
4	37	CPU_BOOT_MODE0	P4	BOOT_MODE0	1.8V
4	38	ADC2_IN2_IMX7_CONN	AB1	ADC2_IN2	1.8V
4	39	GPIO1_IO13_IMX7_CONN	T3	GPI01_I013	1.8V
4	40	ADC2_IN3_IMX7_CONN	AB2	ADC2_IN3	1.8V
4	41	GPIO1_IO12_IMX7_CONN	T2	GPIO1_IO12	1.8V
4	42	GROUND			
4	43	GPIO1_IO10_IMX7_CONN	R5	GPIO1_IO10	1.8V
4	44	SAI1_TXD_iMX7_CONN	E11	SAI1_TXD	3.3V
4	45	GPIO1_IO09_IMX7_CONN	R2	GPIO1_IO09	1.8V
4	46	SAI1_RXD_iMX7_CONN	E12	SAI1_RXD	3.3V
4	47	GPIO1_IO07_IMX7_CONN	P3	GPIO1_IO07	1.8V
4	48	SAI1_TXC_iMX7_CONN	C11	SAI1_TXC	3.3V
4	49	GPIO1_IO06_IMX7_CONN	P2	GPIO1_IO06	1.8V
4	50	SAI1_RXFS_iMX7_CONN	C12	SAI1_RXFS	3.3V
4	51	GPIO1_IO04_IMX7_CONN	N6	GPIO1_IO04	1.8V
4	52	SAI1_RXC_iMX7_CONN	D12	SAI1_RXC	3.3V
4	53	GPIO1_IO00_IMX7_CONN	N1	GPIO1_IO00	1.8V
4	54	SAI1_TXFS_iMX7_CONN	D11	SAI1_TXFS	3.3V
4	55	GPIO1_IO02_IMX7_CONN	N3	GPIO1_IO02	1.8V
4	56	GROUND			
4	57	GROUND			
4	58	CLK_SAI1_MCLK_iMX7_CONN	E10	SAI1_MCLK	3.3V
4	59	I2C4_DATA_IMX7_CONN	L2	I2C4_SDA	1.8V
4	60	GROUND			
4	61	I2C4_CLK_IMX7_CONN	L1	I2C4_SCL	1.8V
4	62	UART3_RX_IMX7_CONN	M1	UART3_RXD	1.8V

				2 H N	
4	63	I2C2_DATA_IMX7_CONN	K3	I2C2_SDA	1.8V
4	64	UART1_RX_IMX7_CONN	L3	UART1_RXD	1.8V
4	65	I2C2_CLK_IMX7_CONN	К2	I2C2_SCL	1.8V
4	66	UART2_RX_IMX7_CONN	L5	UART2_RXD	1.8V
4	67	I2C3_DATA_IMX7_CONN	K6	I2C3_SDA	1.8V
4	68	UART1_TX_IMX7_CONN	L4	UART1_TXD	1.8V
4	69	I2C3_CLK_IMX7_CONN	K5	I2C3_SCL	1.8V
4	70	ETHERNET_P1_LED_1000M			
4	71	SAI2_FS_IMX7_CONN	D9	SAI2_TXFS	3.3V
4	72	ETHERNET_P1_LED_ACT			
4	73	SAI2_RXD_IMX7_CONN	E9	SAI2_RXD	3.3V
4	74	ETHERNET_P1_LED_100M			
4	75	SAI2_TXD_iMX7_CONN	E8	SAI2_TXD	3.3V
4	76	VBUS_USB_OTG1	C8	USB_OTG1_VBUS	
4	77	SAI2_TXC_iMX7_CONN	D8	SAI2_TXC	3.3V
4	78	USB_OTG1_ID_iMX7_CONN	B7	USB_OTG1_ID	3.3V
4	79	GROUND			
4	80	USB_OTG2_ID_iMX7_CONN	B11	USB_OTG2_ID	3.3V
4	81	CLK_SD1_CLK_iMX7_CONN	B5	SD1_CLK	
4	82	VBUS_USB_OTG2	C10	USB_OTG2_VBUS	
4	83	GROUND			
4	84	GROUND			
4	85	SD1_DATA3_iMX7_CONN	D5	SD1_DATA3	VCC_SD
4	86	USB_OTG1_DP_iMX7_CONN	B8	USB_OTG1_DP	
4	87	SD1_DATA1_iMX7_CONN	D6	SD1_DATA1	VCC_SD
4	88	USB_OTG1_DN_iMX7_CONN	A8	USB_OTG1_DN	
4	89	SD1_DATA2_iMX7_CONN	A4	SD1_DATA2	VCC_SD
4	90	GROUND			
4	91	SD1_CMD_iMX7_CONN	C5	SD1_CMD	VCC_SD
4	92	USB_OTG2_DP_iMX7_CONN	B10	USB_OTG2_DP	
4	93	SD1_DATA0_iMX7_CONN	A5	SD1_DATA0	VCC_SD
4	94	USB_OTG2_DN_iMX7_CONN	A10	USB_OTG2_DN	
4	95	nSD1_CD_iMX7_CONN	C6	SD1_CD_B	VCC_SD
4	96	GROUND			
4	97	VCC_SD			
4	98	NC			
4	99	BASE_BOARD_PWR_EN			1.8V
4	100	NC			

Note:

- *The mentioned Ethernet-2 pin muxing is applicable only on single Ethernet configuration.
- NC The NC pins are to be left unconnected and must not be connected to any power lines or ground.

This section describes the interface signals, reference schematics with the examples and unused interface signals termination of the various interfaces.

The interfaces are as follows:

- MIPI DSI
- Parallel Display
- Electrophoretic Display
- MIPI CSI
- Parallel Camera
- Gigabit Ethernet
- USB
- uSDHC NTERFACE
- Synchronous Audio Interface
- Medium Quality Sound (MQS)
- UART Interface
- I2C Interface
- FlexCAN Interface
- ECSPI
- Quad SPI
- Pulse Width Modulation
- Analog Input Signal
- PCle

MIPI DSI

MIPI DSI interface features:

- Compliant with MIPI Alliance Specification for Display Serial Interface (DSI), Version V1.01r11.
- Fully Compliant with MIPI Alliance Standard for Display Pixel Interface (DPI-2), Version 2.00 15 September 2005 with Pixel Data bus width up to 24bits
- Supports up to 2 D-PHY Data Lanes:
 - Maximum resolution: up to SXGA+(1400 x 11050 @ 60 Hz, 24 bpp)
 - Video Mode Pixel Formats, 16 bpp, 18 bpp packed, 18 bpp loosely packed (3byte format), and 24 bpp.
- The control lines such as touch, enable, reset and so on can be achieved through GPIOs. Depending on the I/O line of the display or camera, please select the I2C that is to be used.

This interface covers the following sections in detail.

- MIPI DSI Signals
- Reference Schematics and Layout guidelines
- Unused MIPI DSI Signals Termination

MIPI DSI Signals

The following table shows the MIPI DSI signals.

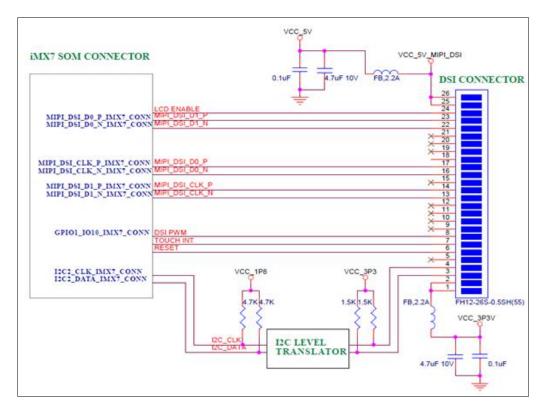

Pin	Name	I/O	Туре	Power	Description
				Rail	
CN3.61	MIPI_DSI_D0_P_IMX7_CONN	0	DS	-	Positive DSI data 0 differential
CN3.63	MIPI_DSI_D0_N_IMX7_CONN	0	DS	-	Negative DSI data 0 differential
CN3.67	MIPI_DSI_CLK_P_IMX7_CONN	0	DS	-	Positive DSI clock differential
CN3.69	MIPI_DSI_CLK_N_IMX7_CONN	0	DS	-	Negative DSI clock differential
CN3.73	MIPI_DSI_D1_P_IMX7_CONN	0	DS	-	Positive DSI data 1 differential
CN3.75	MIPI_DSI_D1_N_IMX7_CONN	0	DS	-	Negative DSI data 1 differential

Table 3: MIPI DSI Signals

Reference Schematics and Layout Guidelines

Care must be taken while routing the differential signals so that the differential pair lines are length matched with a tolerance of 5 mils, also the intra pair length must also be matched with clock as reference and a tolerance of 100 mils. It is recommended to maintain a differential impedance of 90 ohms on the differential signals.

The following figure shows the MIPI DSI reference schematic.

Figure 3: MIPI DSI Reference Schematics

The number of GPIOs required apart from the MIPI signals can vary based on the requirement of the MIPI Display used and must be suited to its needs.

In this case, the I2C signals required are of 3.3 V domain but the I2C from the eSOMiMX7 are of 1.8 V and hence an I2C level translator is required.

Note: There are no pull-ups on the I2C lines in the eSOMiMX7 and hence the external pull ups are required.

Unused MIPI DSI Signals Termination

All MIPI DSI signals can be left unconnected if not used.

Parallel Display

The parallel interface of iMX7 can be connected to a parallel display unit up to 24 bits. The numbers of bits per pixel can be configured to 16/18/24 bit. eSOMiMX7 also supports ITU-R BT.656 (DVI Mode) mode which allows the RGB to YCbCr 4:2:2 color space conversion to support 525/60 and 625/50 operations.

This interface covers the following sections in detail.

- Parallel Display Signals
- <u>Colour Mapping</u>
- Parallel Display Interface Signals Timing Details
- Layout Guidelines
- Unused Parallel Display Signals Termination

Parallel Display Signals

The following table shows the parallel display signals.

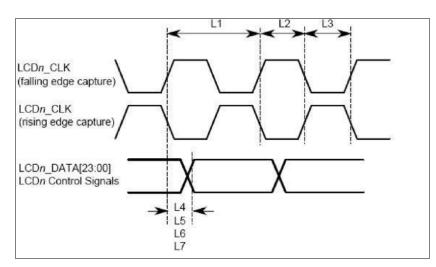
Table 4: Parallel Display Signals

Pin	Name	I/O	Power Rail	Description
CN3.27	iMX7_LCD_ENABLE	0	1.8V	Enable signal
CN3.41	iMX7_LCD_VSYNC	0	1.8V	Display vertical sync
CN3.39	iMX7_LCD_HSYNC	0	1.8V	Display horizontal sync
CN3.28	CLK_iMX7_LCD_CLK	0	1.8V	Display pixel clock
CN3.58	iMX7_LCD_RESET	0	1.8V	Reset signal
CN3.36	iMX7_LCD_DATA0	0	1.8V	Display data output 0
CN3.54	iMX7_LCD_DATA1	0	1.8V	Display data output 1
CN3.40	iMX7_LCD_DATA2	0	1.8V	Display data output 2
CN3.57	iMX7_LCD_DATA3	0	1.8V	Display data output 3
CN3.38	iMX7_LCD_DATA4	0	1.8V	Display data output 4
CN3.53	iMX7_LCD_DATA5	0	1.8V	Display data output 5
CN3.55	iMX7_LCD_DATA6	0	1.8V	Display data output 6
CN3.35	iMX7_LCD_DATA7	0	1.8V	Display data output 7
CN3.34	iMX7_LCD_DATA8	0	1.8V	Display data output 8
CN3.45	iMX7_LCD_DATA9	0	1.8V	Display data output 9

CN3.49	iMX7_LCD_DATA10	0	1.8V	Display data output 10
CN3.29	MX7_LCD_DATA11	0	1.8V	Display data output 11
CN3.32	iMX7_LCD_DATA12	0	1.8V	Display data output 12
CN3.48	iMX7_LCD_DATA13	0	1.8V	Display data output 13
CN3.43	iMX7_LCD_DATA14	0	1.8V	Display data output 14
CN3.42	iMX7_LCD_DATA15	0	1.8V	Display data output 15
CN3.56	iMX7_LCD_DATA16	0	1.8V	Display data output 16
CN3.31	iMX7_LCD_DATA17	0	1.8V	Display data output 17
CN3.46	iMX7_LCD_DATA18	0	1.8V	Display data output 18
CN3.52	iMX7_LCD_DATA19	0	1.8V	Display data output 19
CN3.51	iMX7_LCD_DATA20	0	1.8V	Display data output 20
CN3.50	iMX7_LCD_DATA21	0	1.8V	Display data output 21
CN3.47	iMX7_LCD_DATA22	0	1.8V	Display data output 22
CN3.33	iMX7_LCD_DATA23	0	1.8V	Display data output 23

Colour Mapping

Colour mapping specifies the LCD lines that are to be used while configuring the number of bits per pixel. Depending on the number of bits, the position of LSB varies. MSB is fixed for all the 3 colours.


The following table shows the colour mapping for 16/18/24-bit interface.

Pin	Name	RGB Values	16 Bit	18 Bit	24 Bit
CN3.36	iMX7_LCD_DATA0	LCD_B0			BO
CN3.54	iMX7_LCD_DATA1	LCD_B1			B1
CN3.40	iMX7_LCD_DATA2	LCD_B2		BO	B2
CN3.57	iMX7_LCD_DATA3	LCD_B3	BO	B1	B3
CN3.38	iMX7_LCD_DATA4	LCD_B4	B1	B2	B4
CN3.53	iMX7_LCD_DATA5	LCD_B5	B2	B3	B5
CN3.55	iMX7_LCD_DATA6	LCD_B6	B3	B4	B6
CN3.35	iMX7_LCD_DATA7	LCD_B7	B4	B5	B7
CN3.34	iMX7_LCD_DATA8	LCD_G0			G0
CN3.45	iMX7_LCD_DATA9	LCD_G1			G1
CN3.49	iMX7_LCD_DATA10	LCD_G2	G0	G0	G2
CN3.29	MX7_LCD_DATA11	LCD_G3	G1	G1	G3
CN3.32	iMX7_LCD_DATA12	LCD_G4	G2	G2	G4
CN3.48	iMX7_LCD_DATA13	LCD_G5	G3	G3	G5
CN3.43	iMX7_LCD_DATA14	LCD_G6	G4	G4	G6
CN3.42	iMX7_LCD_DATA15	LCD_G7	G5	G5	G7
CN3.56	iMX7_LCD_DATA16	LCD_R0			RO
CN3.31	iMX7_LCD_DATA17	LCD_R1			R1
CN3.46	iMX7_LCD_DATA18	LCD_R2		RO	R2
CN3.52	iMX7_LCD_DATA19	LCD_R3	RO	R1	R3
CN3.51	iMX7_LCD_DATA20	LCD_R4	R1	R2	R4
CN3.50	iMX7_LCD_DATA21	LCD_R5	R2	R3	R5
CN3.47	iMX7_LCD_DATA22	LCD_R6	R3	R4	R6
CN3.33	iMX7_LCD_DATA23	LCD_R7	R4	R5	R7

Table 5: Parallel Display Signals Colour Mapping

Parallel Display Interface Signals Timing Details

The following figure shows the timing details of the parallel display.

Figure 4: MIPI DSI Timing Diagram

The following table shows the timing details of the parallel display.

Table 6: MIPI DSI Timing Details

ID	Parameter	Symbol	Min	Max	Unit
L1	LCD pixel clock frequency	tCLK(LCD)	-	150	MHz
L2	LCD pixel clock high (falling edge capture)	tCLKH(LCD)	3	-	ns
L3	LCD pixel clock low (rising edge capture)	tCLKL(LCD)	3	—	ns
L4	LCD pixel clock high to data valid (falling edge	td(CLKH-	-1	1	ns
	capture)	DV)			
L5	LCD pixel clock low to data valid (rising edge	td(CLKL-	-1	1	ns
	capture)	DV)			
L6	LCD pixel clock high to control signals valid	td(CLKH-	-1	1	ns
	(falling edge capture)	CTRLV)			
L7	LCD pixel clock low to control signals valid (rising	td(CLKL-	-1	1	ns
	edge capture)	CTRLV)			

Layout Guidelines

Parallel display signals are to be treated as single ended signals with an impedance of 50 ohms. The lines are to be length matched with clock as reference and with a tolerance of 250 mils. Series terminations are recommended on these lines in order to reduce electromagnetic emission. The serial resistor value is a trade-off between reduction of electromagnetic radiation and signal quality.

Unused Parallel Display Signals Termination

All parallel display signals can be left unconnected if not used.

Electrophoretic Display

eSOMiMX7 has an EPD controller. EPDC is used to interface e-paper displays. The major advantage of e-paper display is that it needs very low power to operate. This is because the display does not refresh the image unlike the LCD displays. Once an image is written on display the image is retained until next image (refreshing) is displayed on the display. Also, even if the power is cut the display retains the image.

Some of the features of EPDC are:

- Resolutions up to 4096 x 4096 pixels with 20 Hz refresh and resolutions up to 1650 x 2332 pixels at 106 Hz refresh.
- Dual-scan TFT drive mode to support ultra-high resolution/refresh rate displays.
- Supports LVDS and DDR mode data transfers.
- 16-bit parallel data interface.

This interface covers the following sections in detail.

- <u>Electrophoretic Display Signals</u>
- <u>Electrophoretic Display Timing Details</u>
- Unused Electrophoretic Display Signals Termination

Electrophoretic Display Signals

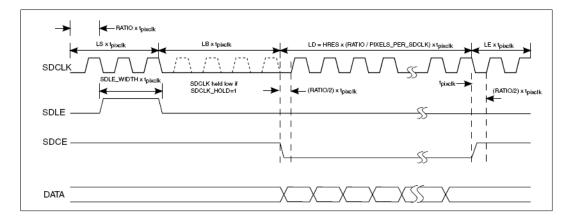
The following table shows the Electrophoretic Display signals.

Pin	Name	I/O	Power Rail	Description
CN3.1	iMX7_CONN_QSPI_A_DATA0	0	3.3V	EPDC_DATA00
CN3.5	iMX7_CONN_QSPI_A_DATA1	0	3.3V	EPDC_DATA01
CN3.9	iMX7_CONN_QSPI_A_DATA2	0	3.3V	EPDC_DATA02
CN3.3	iMX7_CONN_QSPI_A_DATA3	0	3.3V	EPDC_DATA03
CN3.11	iMX7_CONN_QSPI_A_DQS	0	3.3V	EPDC_DATA04
CN3.13	iMX7_CONN_QSPI_A_SCLK	0	3.3V	EPDC_DATA05
CN3.7	iMX7_CONN_QSPI_A_SS0_B	0	3.3V	EPDC_DATA06
CN3.15	iMX7_CONN_QSPI_A_SS1_B	0	3.3V	EPDC_DATA07
CN3.2	iMX7_CONN_QSPI_B_DATA0	0	3.3V	EPDC_DATA08
CN3.8	iMX7_CONN_QSPI_B_DATA1	0	3.3V	EPDC_DATA09
CN3.10	iMX7_CONN_QSPI_B_DATA2	0	3.3V	EPDC_DATA10
CN3.14	iMX7_CONN_QSPI_B_DATA3	0	3.3V	EPDC_DATA11
CN3.6	iMX7_CONN_QSPI_B_DQS	0	3.3V	EPDC_DATA12
CN3.16	iMX7_CONN_QSPI_B_SCLK	0	3.3V	EPDC_DATA13
CN3.4	iMX7_CONN_QSPI_B_SS0_B	0	3.3V	EPDC_DATA14
CN3.12	iMX7_CONN_QSPI_B_SS1_B	0	3.3V	EPDC_DATA15
CN3.100	P2MDIDN*	0	3.3V	EPDC Source Driver-Chip-
				enable/Start-Pulse
CN3.98	P2MDIDP*	0	3.3V	EPDC Source Driver-Chip-
				enable/Start- Pulse

Table 7: Electrophoretic Display Signals

CN3.80	P2MDIBN*	0	3.3V	EPDC Source Driver-Chip- enable/Start- Pulse
CN3.82	P2MDIBP*	0	3.3V	EPDC Source Driver-Chip-
				enable/Start- Pulse
CN3.18	ETHERNET_P2_ACT*	0	3.3V	EPDC Source Driver-Shift Clock
CN3.20	ETHERNET_P2_LED_1000M*	0	3.3V	EPDC Source Driver-Latch Enable
CN3.22	ETHERNET_P2_LED_100M*	0	3.3V	EPDC Source Driver-Output Enable
CN3.24	CONN_RGMII2_RXD3	0	3.3V	EPDC Source Driver-Shift dir
CN3.86	P2MDIAP*	0	3.3V	EPDC Gate Driver-Clock
CN3.88	P2MDIAN*	0	3.3V	EPDC Gate Driver-Output Enable
CN3.94	P2MDICN*	0	3.3V	EPDC Gate Driver-Shift direction
CN3.92	P2MDICP*	0	3.3V	EPDC Gate Driver-Start Pulse
CN3.19	iMX7_CONN_EPDC_PWRCOM	0	3.3V	EPDC Panel-Power control
CN3.21	iMX7_CONN_EPDC_PWRSTAT	0	3.3V	EPDC Panel-Power status good
CN3.25	iMX7_CONN_EPDC_BDR0	0	3.3V	EPDC Panel-Border Control
CN3.23	iMX7_CONN_EPDC_BDR1	0	3.3V	EPDC Panel-Border Control

Note:


- *Ethernet2 is not a part of eSOMiMX7 Solo.
- *EPDC signals are multiplexed with Ethernet 2, so Ethernet 2 will not be available in Dual core SOM with EPDC configuration.

EPDC Interface Signals Timing Details

In DDR mode the data is placed on both the rising and falling edge of the clock. The timing parameters can be classified into two types:

- Line timing data present in a line(Horizontal)
- Frame timing data present in a complete frame(Vertical)

The following diagram shows the line timing diagram for EPDC in DDR mode0.

Figure 5: EPDC Line Timing Diagram (DDR Mode 0)

The following diagram shows the line timing in DDR mode1.

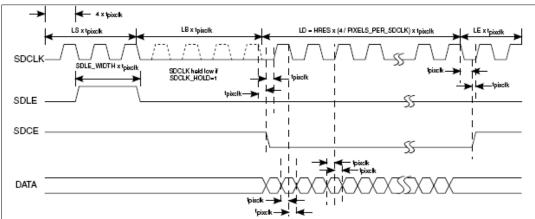


Figure 6: EPDC Line Timing Diagram (DDR Mode 1)

The following diagram shows the frame timing (Vertical) for EPDC.

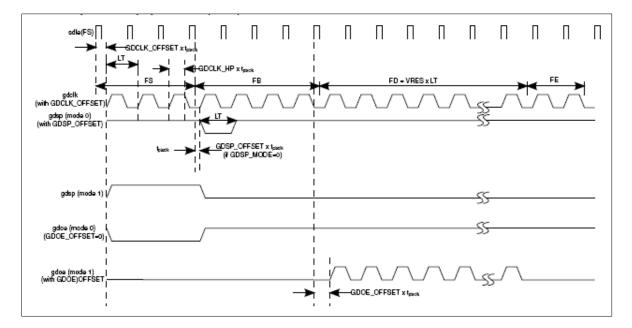


Figure 7: EPDC Vertical Frame Timing Diagram

The following equations define the timing of the panel scan frame (where LT = linetiming and FT = frame-timing):

LT = TPIXCLK (LS + LB + ((HRES x Ratio + LE)/PIXELSPERSDCLK)

FT = LT x (FS + FB + VRES + LE)

The following table outlines the various configurations and clock ratios. It also lists the relevant register settings for single scan mode configuration.

High Level Mode	HW_ EPDC_ CTRL	EPDC_ DATA Pins	HW_EPD C_ FORM AT	HW_EPDC_TCE_CTRL			C_TCE _CTRL	Required PIXCLK (RATIO)
	DUAL _SCAN	used	TFT_PIXEL _FORMAT	PIXELS_P ER_SDCL	LVDS_ MODE	DDR_ MOD	SDDO_ WIDTH	
2bpp, 8-bit single ended, SDR	0	[7:0]	4B[V]	4	0	0	8bit	SDCLK x 2
2bpp, 16-bit single ended, SDR	0	[15:0]	2B[V]	8	0	0	16bit	SDCLK x 4
2bpp, 8-bit, DDR (LVDS option)	0	[7:0], [15:8]	2B[V]	8	1\0	1	8bit	SDCLK x 4
4bpp, 8-bit single ended, SDR	0	[7:0]	4B[V]	2	0	0	8bit	SDCLK x 2
4bpp, 16- bit, single ended SDR	0	[15:0]	4B[V]	4	0	0	16bit	SDCLK x 2
4bpp, 8-bit, DDR (LVDS option)	0	[7:0], [15:8]	4B[V]	4	1\0	1	8bit	SDCLK x 4
4bpp, 16- bit, single ended, DDR	0	[15:0]	4B[V]	8	0	1	16bit	SDCLK x 4

Table 8: Single Scan Mode

The following table outlines the various configurations and clock ratios. It also lists the relevant register settings for dual scan mode configuration.

High Level Mode	HW_ EPDC_ CTRL	EPDC_ DATA pins	HW_EPDC _ FORMAT	HW_EPDC_TCE_CTRL			C_TCE _CTRL	Required PIXCLK (RATIO)
	DUAL _SCAN	used	TFT_PIXEL _FORMAT	PIXELS_P ER_SDCL	LVDS_ MODE	DDR_ MOD	SDDO_ WIDTH	
2bpp, 8-bit single ended, SDR	1	[7:0],[15:8]	2B[V]	4	0	0	8bit	SDCLK x 2
2bpp, 8-bit, DDR	1	[7:0], [15:8]	2B[V]	8	0	1	8bit	SDCLK x 4
4bpp, 8-bit single ended, SDR	1	[7:0], [15:8]	4B[V]	2	0	0	8bit	SDCLK x 2
4bpp, 8-bit, DDR	1	[7:0], [15:8]	4B[V]	4	0	1	8bit	SDCLK x 4

Unused Electrophoretic Display Signals Termination

All Unused electrophoretic display signals can be left unconnected.

MIPI CSI

eSOMiMX7 has a 2 lane CMOS Sensor interface. It can implement all protocol functions defined in the MIPI CSI-2 Specification.

MIPI CSI interface features:

- Compatible to Protocol-to-PHY Interface (PPI) in MIPI D-PHY
- Supports various primary and secondary image formats such as:
 - YUV420, YUV420, YUV420 (Legacy), YUV420 (CSPS), YUV422 of 8-bits and 10-bits
 - RGB565, RGB666, RGB888
- The control lines such as enable, reset etc can be achieved through GPIOs. Depending on the I/O line of the camera please select the I2C that is to be used.

This interface covers the following sections in detail.

- MIPI CSI Signals
- <u>Reference Schematics and Layout guidelines</u>
- <u>Unused MIPI CSI Signals Termination</u>

MIPI CSI Signals

The following table shows the MIPI CSI signals.

Table 10: MIPI CSI Signals

Pin	Name	I/0	Туре	Power Rail	Description
CN3.62	MIPI_CSI_D0_P_IMX7_CONN	- 1	DS	-	Positive CSI-2 data 0 differential
CN3.64	MIPI_CSI_D0_N_IMX7_CONN	- 1	DS	-	Negative CSI-2 data 0 differential
CN3.68	MIPI_CSI_CLK_P_IMX7_CONN	- 1	DS	-	Positive CSI-2 clock differential
CN3.70	MIPI_CSI_CLK_N_IMX7_CONN	- 1	DS	-	Negative CSI-2 clock differential
CN3.74	MIPI_CSI_D1_P_IMX7_CONN	Ι	DS	-	Positive CSI-2 data 1 differential
CN3.76	MIPI_CSI_D1_N_IMX7_CONN	Ι	DS	-	Negative CSI-2 data 1 differential

Reference Schematics and Layout Guidelines

Care must be taken while routing the differential signals so that the differential pair lines are length matched with a tolerance of 5 mils, also the intra pair length must also be matched with clock as reference and a tolerance of 100 mils. It is recommended to maintain a differential impedance of 90 ohms on the differential signals.

The number of GPIOs required apart from the MIPI signals can vary based on the requirement of the MIPI camera used and must be suited to its needs.

It is recommended to use an I2C level translator if the sensor does not support 1.8V IO.

Note: There is no pull up on the I2C lines in the eSOMiMX7 and hence external pull ups are required.

The following figure shows the MIPI CSI reference schematic.

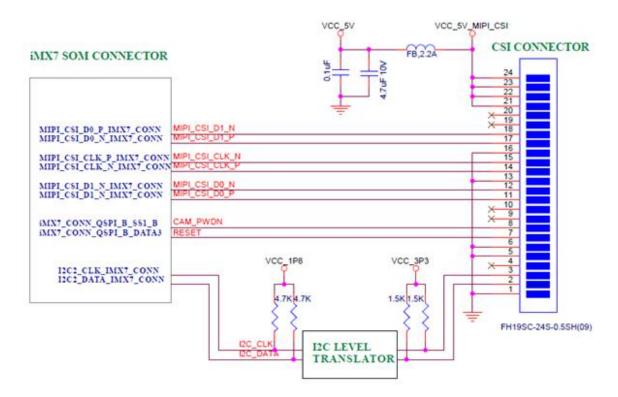


Figure 8: MIPI CSI Reference Schematics

Unused MIPI CSI Signals Termination

All MIPI DSI signals can be left unconnected if not used.

Parallel Camera

The parallel camera interface of iMX7 can be connected to a parallel camera unit up to 24 bits. It provides support for CCIR656 video interface as well as traditional sensor interface with 8-bit / 16-bit / 24-bit data port for CyBC, YUV, or RGB data input and 8-bit / 10-bit / 16-bit data port for Bayer data input. It also has configurable master clock frequency output to sensor and provides 256 x 64 FIFO to store received image pixel data.

This interface covers the following sections in detail.

- Parallel Camera Signals
- <u>Unused Parallel Camera signals termination</u>

Parallel Camera Signals

The following table shows the parallel camera signals.

Table 11: Parallel Camera Signals

Pin	Signal Name	I/O	Power Rail	Description
CN3.31	LCD1_DATA17	I	1.8V	CSI_DATA00, Data Sensor Signal
CN3.56	LCD1_DATA16	I	1.8V	CSI_DATA01, Data Sensor Signal
CN3.42	LCD1_DATA15	I	1.8V	CSI_DATA02, Data Sensor Signal
CN3.43	LCD1_DATA14	I	1.8V	CSI_DATA03, Data Sensor Signal
CN3.48	LCD1_DATA13	I	1.8V	CSI_DATA04, Data Sensor Signal
CN3.32	LCD1_DATA12	I	1.8V	CSI_DATA05, Data Sensor Signal
CN3.29	LCD1_DATA11	Ι	1.8V	CSI_DATA06, Data Sensor Signal
CN3.49	LCD1_DATA10	Ι	1.8V	CSI_DATA07, Data Sensor Signal
CN3.45	LCD1_DATA09	Ι	1.8V	CSI_DATA08, Data Sensor Signal
CN3.34	LCD1_DATA08	Ι	1.8V	CSI_DATA09, Data Sensor Signal
CN3.33	LCD1_DATA23	I	1.8V	CSI_DATA10, Data Sensor Signal
CN3.47	LCD1_DATA22	I	1.8V	CSI_DATA11, Data Sensor Signal
CN3.50	LCD1_DATA21	Ι	1.8V	CSI_DATA12, Data Sensor Signal
CN3.51	LCD1_DATA20	Ι	1.8V	CSI_DATA13, Data Sensor Signal
CN3.52	LCD1_DATA19	Ι	1.8V	CSI_DATA14, Data Sensor Signal
CN3.46	LCD1_DATA18	I	1.8V	CSI_DATA15, Data Sensor Signal
CN3.28	LCD1_CLK	Ι	1.8V	CSI_DATA16, Data Sensor Signal
CN3.27	LCD1_ENABLE	I	1.8V	CSI_DATA17, Data Sensor Signal
CN3.39	LCD1_HSYNC	Ι	1.8V	CSI_DATA18, Data Sensor Signal
CN3.41	LCD1_VSYNC	I	1.8V	CSI_DATA19, Data Sensor Signal
CN3.36	LCD1_DATA00	Ι	1.8V	CSI_DATA20, Data Sensor Signal
CN3.54	LCD1_DATA01	I	1.8V	CSI_DATA21, Data Sensor Signal
CN3.40	LCD1_DATA02	I	1.8V	CSI_DATA22, Data Sensor Signal
CN3.57	LCD1_DATA03	I	1.8V	CSI_DATA23, Data Sensor Signal
CN3.53	LCD1_DATA05	I	1.8V	Horizontal Sync (Blank Signal)
CN4.67	I2C3_DATA_IMX7_CONN	I	1.8V	Horizontal Sync (Blank Signal)
CN3.55	LCD1_DATA06	I	1.8V	Pixel Clock
CN4.61	I2C4_CLK_IMX7_CONN	I	1.8V	Pixel Clock
CN3.38	LCD1_DATA04	Ι	1.8V	Vertical Sync (Start of Frame)
CN4.69	I2C3_CLK_IMX7_CONN	Ι	1.8V	Vertical Sync (Start of Frame)
CN3.35	LCD1_DATA07	0	1.8V	CMOS Sensor Master Clock
CN4.59	I2C4_DATA_IMX7_CONN	0	1.8V	CMOS Sensor Master Clock
CN3.58	LCD1_RESET	Ι	1.8V	CSI Field Signal

Unused Parallel Camera Signals Termination

All parallel camera signals can be left unconnected if not used.

Gigabit Ethernet

eSOMiMX7 supports two Gigabit Ethernet (1000Base-T) interface port as standard interfaces. The PHY of these interfaces are located on the module. Therefore, only

the magnetics and the connector are needed on the carrier board. The module features the AR8035 Integrated 10/100/1000 Gigabit Ethernet Transceiver as PHY which is connected over RGMII with the MAC in the Processor. The interface is backward compatible with the 10/100Mbit Ethernet (10/100Base-TX) standard and has the following features:

- 10BASE-Te/100BASE-Tx/1000 BASE-T IEEE 802.3 compliant
- Error-free operation up to 140 meters of CAT5 cable
- Fully integrated digital adaptive equalizers, echo cancellers, and near end crosstalk (NEXT) cancellers
- A robust surge protection with ±750V/ differential mode and ±4KV/common mode
- Jumbo frame supports up to 10KB (full duplex)
- All digital baseline wander correction
- Automatic polarity correction
- IEEE 802.3u compliant auto-negotiation

This interface covers the following sections in detail.

- <u>Gigabit Ethernet Signals</u>
- <u>Ethernet Reference Schematics and Layout Guidelines</u>
- <u>Unused Gigabit Ethernet Signals Termination</u>

Gigabit Ethernet Signals

The following table shows the Gigabit Ethernet signals.

Pin	Signal Name	١/	Тур	Power	Description
		0	е	Rail	
CN3.97	P1MDIAN		DS		Ethernet1 Negative A differential lane
CN3.99	P1MDIAP		DS		Ethernet1 Positive A differential lane
CN3.85	P1MDIBN		DS		Ethernet1 Negative B differential lane
CN3.87	P1MDIBP		DS		Ethernet1 Positive B differential lane
CN3.91	P1MDICN		DS		Ethernet1 Negative C differential lane
CN3.93	P1MDICP		DS		Ethernet1 Positive C differential lane
CN3.79	P1MDIDN		DS		Ethernet1 Negative D differential lane
CN3.81	P1MDIDP		DS		Ethernet1 Positive D differential lane
CN4.74	ETHERNET_P1_LED_100M	0		3.3V	Ethernet1 LED Status for 10/100 BASE-
					T link
CN4.70	ETHERNET_P1_LED_1000M	0		3.3V	Ethernet1 LED Status for 1000 BASE-T
					link
CN4.72	ETHERNET_P1_ACT	10		3.3V	Ethernet1 LED Status for link activity
CN3.88	P2MDIAN		DS		Ethernet2 Negative A differential lane
CN3.86	P2MDIAP		DS		Ethernet2 Positive A differential lane
CN3.80	P2MDIBN		DS		Ethernet2 Negative B differential lane
CN3.82	P2MDIBP		DS		Ethernet2 Positive B differential lane
CN3.94	P2MDICN		DS		Ethernet2 Negative C differential lane
CN3.92	P2MDICP		DS		Ethernet2 Positive C differential lane

Table 12: Gigabit Ethernet Signals

CN3.100	P2MDIDN		DS		Ethernet2 Negative D differential lane
CN3.98	P2MDIDP		DS		Ethernet2 Positive D differential lane
CN3.22	ETHERNET_P2_LED_100M	0		3.3V	Ethernet2 LED Status for 10/100 BASE-
					T link
CN3.20	ETHERNET_P2_LED_1000M	0		3.3V	Ethernet2 LED Status for 1000 BASE-T
					link
CN3.18	ETHERNET_P2_ACT	10		3.3V	Ethernet2 LED Status for link activity

Ethernet Reference Schematics and Layout Guidelines

The Ethernet reference schematics and layout guidelines for the LED interfaces are described in the following section.

LED Interface

The LED interface can either be controlled by the PHY or controlled manually, independent of the state of the PHY. Three status LEDs are available. These can be used to indicate operation speed, duplex mode, and link status. The LEDs can be programmed to different status functions from their default value. They can also be controlled directly from the MII register interface. The reference design schematics for the ethernet LEDs are shown in the following figures.

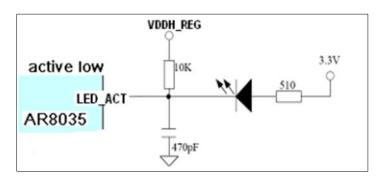


Figure 9: Reference Design Schematic - Active Low

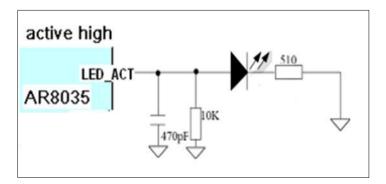


Figure 10: Reference Design Schematic - Active High

LED_ACT/LED_1000 active states depend on power on strapping mode. When strapped high, active low. When strapped low, active high. LED_10_100 depends on LED_1000 power on strapping mode. So, LED_10_100 and LED_1000 must have the same LED design.

The following table shows the Gigabit Ethernet LED signal details.

Table 13: Gigabit Ethernet LED Signal Details

Symbol	10M Link	10M Active	100M Link	100M	1000M	1000M
				Active	Link	Active
LED_10_100	Off	Off	On	On	Off	Off
LED_1000	Off	Off	Off	Off	On	On
LED_ACT	On	Blink	On	Blink	On	Blink

Ethernet Schematic Example

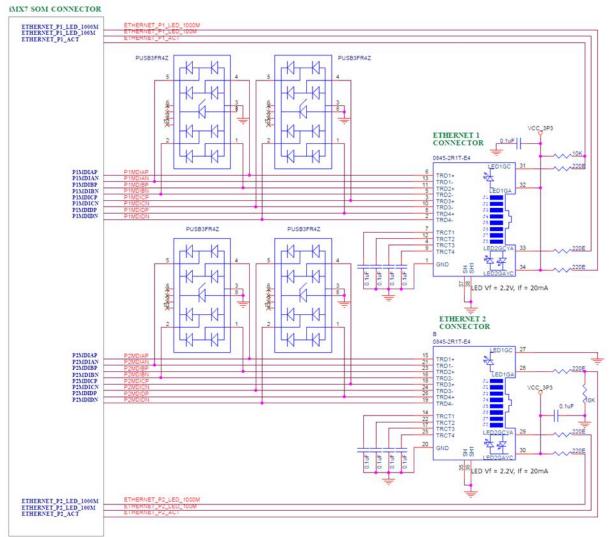
Ethernet connectors with integrated magnetics are preferable. If a design with external magnetics is chosen, additional care must be taken to route the signals between the magnetics and Ethernet connector.

The LED output signals can be connected directly to the LED of the Ethernet jack with suitable serial resistors.

Each lane of the gigabit Ethernet is to be treated as differential pair signals maintaining a differential impedance of 90 ohms. The differential pairs are to be length matched with a tolerance of 5 mils.

It must be seen from the reference schematics that both the PHY has different PHY ID configuration.

It is recommended to Pull up LED_ACT pin of Ethernet 1 to 3.3V and Pull-down LED_ACT pin of Ethernet 2 so that PHY ID of Ethernet 1 will be 0X04 and PHY ID of Ethernet 2 will be 0X00.


The following table shows the Gigabit Ethernet PHY address details.

Configurations	Ethernet 1	Ethernet 2		
LED_ACT	Pull up to 3.3V	Pull down		
PHY ID	0X04	0X00		

Table 14: Gigabit Ethernet PHY Address Details

The following figure shows the Gigabit Ethernet reference schematic.

Figure 11: Gigabit Ethernet Reference Schematic

Unused Ethernet Signals Termination

All Ethernet signals can be left unconnected if not used.

Universal Serial Bus (USB)

In eSOMiMX7, the USB controller block provides high performance USB functionality that conforms to the USB specification, Rev. 2.0 and the On-The-Go and Embedded host supplement to the USB Rev 2.0 specification. The various modes supported by each controller is defined in the following table.

eSOMiMX7 Port	1.5 Mbit/s Low Speed	12 Mbit/s Full Speed	480 Mbit/s High Speed
	(1.0)	(1.1)	(2.0)
OTG1	(Host Mode only)	YES	YES
OTG2	(Host Mode only)	YES	YES

Table 15: USB Speed Details

The following list provides features of each of the OTG controller cores:

- High-Speed/Full-Speed/Low-Speed OTG core.
- HS/FS/LS UTMI compliant interface connected to on-chip UTMI PHY.
- High Speed, Full Speed and Low Speed operation in Host mode (with UTMI transceiver).
- High Speed, and Full Speed operation in Peripheral mode (with UTMI transceiver).
- Hardware support for OTG signalling, Session Request Protocol (SRP), Host Negotiation Protocol (HNP), and Attach Detection Protocol (ADP). ADP support includes dedicated timer hardware and register interface.
- Up to 8 bidirectional endpoints.
- Supports charger detection with register interface only.

This interface covers the following sections in detail.

- Universal Serial Bus Signals
- <u>Reference Schematics and Layout Guidelines</u>
- <u>Unused Universal Serial Bus Signals Termination</u>

Universal Serial Bus Signals

Both the OTG controller provide a pair of differential signals and an ID pin to support OTG feature. The USB 2.0 data signals do not support polarity inversion and hence the data signals cannot be interchanged.

The following tables shows the USB OTG signals.

Pin	Signal Name	I/O	Туре	Power	Description
				Rail	
CN4.76	VBUS_USB_OTG1		Power	5V	OTG1 Power rail
CN4.86	USB_OTG1_DP_iMX7_CONN		DS		Positive USB OTG 1 data
CN4.88	USB_OTG1_DN_iMX7_CONN		DS		Negative USB OTG 1 data
CN4.78	USB_OTG1_ID_iMX7_CONN	Ι		3.3V	USB host / client identification
CN4.82	VBUS_USB_OTG2		Power	5V	OTG2 Power rail
CN4.92	USB_OTG2_DP_iMX7_CONN		DS		Positive USB OTG 2 data
CN4.94	USB_OTG2_DN_iMX7_CONN		DS		Negative USB OTG 2 data
CN4.80	USB_OTG2_ID_iMX7_CONN	I		3.3V	USB host / client identification

Table 16: Universal Serial Bus OTG Signals

Reference Schematics and Layout Guidelines

The differential USB data signals require a common mode choke to be placed. Make sure that the selected choke is certified for USB 2.0 High Speed. The same is also required for the TVS diodes.

The following figure shows the USB OTG interface reference schematic.

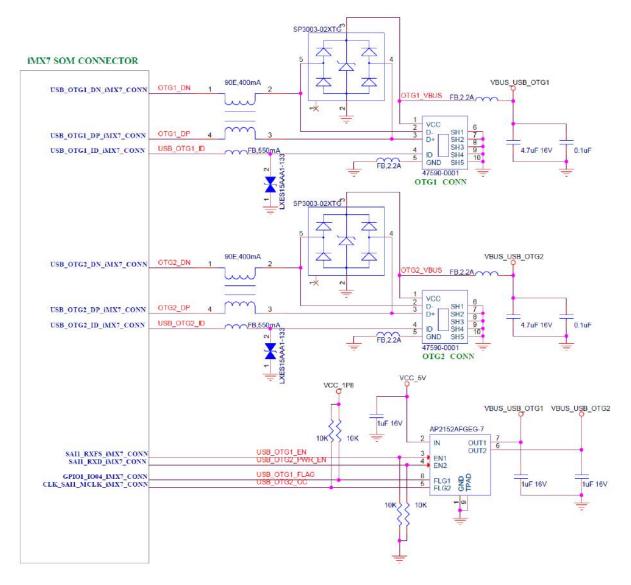


Figure 12 Universal Serial Bus Reference Schematic

The carrier board needs to provide 5V USB bus power on the USB host jacks. According to the USB 2.0 specifications, the maximum current drawn per port is limited by 500mA. The bus power needs to be in the range of 4.75V to 5.25V measured at the USB host jack for any load current from 0mA to 500mA. To ensure that an out of spec device or a defective device is not damaging the 5V power rail on the carrier board, it is recommended adding a current limiting IC.

The inrush current needs to be considered while designing the USB bus power. USB devices can have a maximum input capacitor at the bus power of 10μ F. The maximum inrush charge is limited to 50μ C. This means that the power rail at the USB host jack needs to be tolerant of this inrush current.

While routing the USB lines, care must be taken to ensure that the USB specifications is met. The data signals are to be routed as differential lines. It must be routed with minimum trace length possible and must be length matched with a

tolerance of 5 mils. The differential impedance of the lines must be maintained at 90 ohms.

Unused Universal Serial Bus Signals Termination

All USB Signals can be left unconnected if not used.

PCle

eSOMiMX7 supports a single lane PCIe interface as a standard interface.

The following list the key features of the PCIe PHY:

- 1.5 / 2.5 / 3.0 / 5.0 / 6.0 Gbps Serializer / Deserializer
- Compliant with PCI Express Base Specification 2.1
- Compliant with PIPE Specification 2.0
- 8 / 16 / 20 / 40-bit CMOS Interface for Transmitter and Receiver
- 8B/10B Encoding / Decoding
- Receiver Detection
- Supports Spread Spectrum Clocking in Transmitter and Receiver

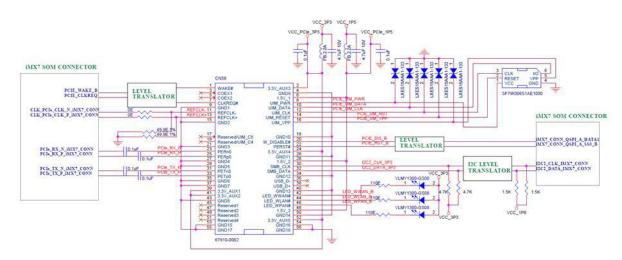
This interface covers the following sections in detail:

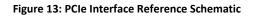
- PCI Express Interface Signals
- <u>Reference Schematics and Layout Guidelines</u>
- PCI Express Signals Termination

PCI Express Interface Signals

The following table shows the PCIe Interface signals.

Table 17: PCIe Interface Signals


Pin	Signal Name	I/O	Туре	Power	Description
				Rail	
CN4.5	PCIe_RX_N_iMX7_CONN	I	DS	-	Negative-side transmitted
					differential input
CN4.7	PCIe_RX_P_iMX7_CONN	I	DS	-	Positive-side transmitted
					differential input
CN4.11	PCIe_TX_N_iMX7_CONN	0	DS	-	Negative-side transmitted
					differential output
CN4.13	PCle_TX_P_iMX7_CONN	0	DS	-	Positive-side transmitted
					differential output
CN4.17	CLK_PCIe_CLK_N_iMX7_CONN	0	DS	-	Positive-side Reference Clock
					Differential Output
CN4.19	CLK_PCIe_CLK_P_iMX7_CONN	0	DS	-	Negative-side Reference Clock
					Differential Output


Reference Schematics and Layout Guidelines

PCIe specification requires placing of a series capacitor on the transmitter and the receiver lines, there is no capacitor on the eSOMiMX7 and hence must be placed on the carrier board. A parallel termination of 49.9 Ohm on the clock line is recommended as per the PCIe standard.

Care must be taken while routing the differential signals so that the differential pair lines are length matched with a tolerance of 5 mils, also the intra pair length must also be matched with clock as reference and a tolerance of 20 mils. It is recommended to maintain a differential impedance of 85 ohms on the differential signals.

The following figure shows the PCIe reference schematic.

Unused PCIe Interface Signals Termination

All PCIe signals can be left unconnected if not used.

uSDHC Interface

eSOMIMX7 supports a Four-bit SD/SDIO/MMC interface as a standard feature that can be used in the carrier board. The uSDHC interface provide up to 4 data bit which can be used for interfacing SD and MMC cards as well as SDIO interface peripherals. The IMX7 Dual Processor supports three SD/SDIO/MMC interfaces, out of which two has been internally used in the eSOMIMX7 SOM for Wi-Fi SDIO module interface and eMMC or NAND support in the SOM.

The SD cards know different bus speed modes. The required signal voltage depends on the bus speed mode. For example, the SDR104 mode requires 1.8V signalling, while Default speed requires 3.3 V signalling. For this purpose, ESOMIMX7 provides a separate supply railing (VCC_SD) connected to an internal LDO which can be

switched between 1.8V and 3.3V as per the mode requirement. It is recommended to use this supply for pull ups used on these lines.

The following table shows the Various SD mode speed details.

Various Bus Speed mode supported by the uSDHC interface are:

Bus Speed Mode Max. Clock Frequency		Max. Bus Speed	Signal Voltage
Default Speed	25 MHz	12.5 MB/s	3.3V
High Speed	50 MHz	25 MB/s	3.3V
DDR50	50 MHz	50 MB/s	1.8V
SDR50	100 MHz	50 MB/s	1.8V
SDR104	208 MHz	104 MB/s	1.8V

Table 18: Various SD Mode Speed Details

- Conforms to the SD Host Controller Standard Specification version 3.0
 - Compatible with the MMC System Specification version 4.2/4.3/4.4/4.41

This interface covers the following sections in detail:

- <u>uSDHC Signals</u>
- <u>Reference Schematics and Layout Guidelines</u>
- <u>uSDHC Interface Signals Timing Details</u>
- Unused uSDHC Signals Termination

uSDHC Signals

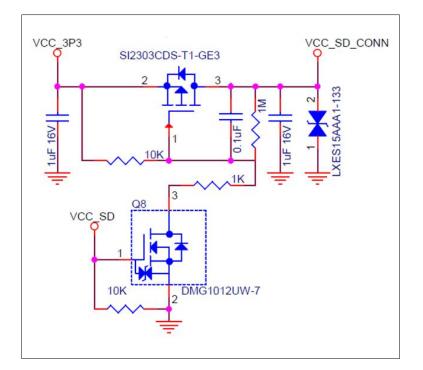
The following table shows the uSDHC signals.

Table 19: uSDHC Signals

Pin	Signal Name	I/O	Туре	Power Rail	Description
CN4.97	VCC_SD		Power		SD Power Supply railing
CN4.81	CLK_SD1_CLK_iMX7_CONN	0		VCC_SD	Clock for MMC/SD/SDIO card
CN4.91	SD1_CMD_iMX7_CONN	10		VCC_SD	CMD line connect to card
CN4.93	SD1_DATA0_iMX7_CONN	10		VCC_SD	DATA0 line in all modes, also used to detect busy state.
CN4.87	SD1_DATA1_iMX7_CONN	10		VCC_SD	DATA1 line in 4-bit mode, Also used to detect interrupt in 1/4-bit mode
CN4.89	SD1_DATA2_iMX7_CONN	10		VCC_SD	DATA2 line or Read Wait in 4-bit mode. Read Wait in 1-bit mode.
CN4.85	SD1_DATA3_iMX7_CONN	10		VCC_SD	DATA3 line in 4-bit mode or configured as card detection pin, can be configured as card detection pin in 1-bit mode
CN4.95	nSD1_CD_iMX7_CONN	I		VCC_SD	Card detection pin

Reference Schematics and Layout Guidelines

The uSDHC module requires pull-up resistors on the data and command lines, also proper ESD must be placed on those lines. There is no dedicated write-protection


signal available. Any free GPIO capable signal can be used if the write-protection function is required. A low pass RC network in the clock line reduces the slew rate of the Clock signals to reduces the electromagnetic radiation problem. The serial resistor value and parallel capacitor is a trade-off between reduction of electromagnetic radiation and signal quality. A good starting value is 22Ω and 22pF. A series termination resistor is recommended on all the data and CMD lines to reduce electromagnetic radiation.

The following routing guidelines are to be followed for the uSDHC signals.

All the four data signals and CMD are to be treated as single ended signals, routed with an impedance of 50 ohms and must be length matched with a tolerance of 100 mils from the clock trace length.

uSDHC Schematic Example

The uSDHC interface in eSOMiMX7 supports multiple speed modes and hence the signal lines require the VCC SD Domain, but the card is to be powered by a 3.3V supply, the same supply that powers the SOM. To avoid any ambiguity in power on sequence, a power switch is implemented as shown in the following diagram.

Figure 14: SD Card Power Switch Diagram

The following figure shows the uSDHC reference schematic.

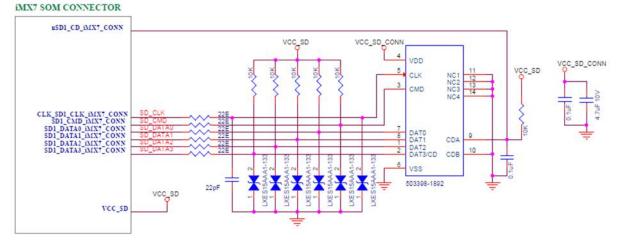
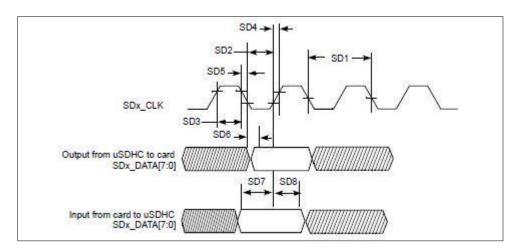



Figure 15: uSDHC Reference Schematic

uSDHC Interface Signals Timing Details

The following figure shows the timing details of the uSDHC interface.

Figure 16: uSDHC Timing Diagram

The following table shows the timing details of the uSDHC interface.

Table 20: uSDHC Timing Details

ID	Parameter	Symbols	Min	Max	Unit			
Card Input Clock								
SD1	Clock Frequency (Low Speed)	fpp1	0	400	kHz			
	Clock Frequency (SD/SDIO Full Speed/High	fpp2	0	25/50	MHz			
	Speed)							
	Clock Frequency (MMC Full Speed/High	fpp3	0	20/52	MHz			
	Speed)							
	Clock Frequency (Identification Mode)	fod	100	400	KHz			
SD2	Clock Low Time	tWL	7	—	ns			
SD3	Clock High Time	twh	7	—	ns			
SD4	Clock Rise Time	tTLH		3	ns			
SD5	Clock Fall Time	tTHL	_	3	ns			
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)								

SD6	uSDHC Output Delay	tOD	-6.6	3.6	ns		
	uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)						
SD7	uSDHC Input Setup Time	tISU	2.5	-	ns		
SD8	uSDHC Input Hold Time	TIH	1.5	-	ns		

Unused uSDHC Signals Termination

The following table shows the unused uSDHC signals termination.

uSDHC Pin	uSDHC Signal Name	Recommended Termination
CN4.97	VCC_SD	To be left unconnected
CN4.81	CLK_SD1_CLK_iMX7_CONN	Can be left unconnected
CN4.91	SD1_CMD_iMX7_CONN	Can be left unconnected
CN4.93	SD1_DATA0_iMX7_CONN	Can be left unconnected
CN4.87	SD1_DATA1_iMX7_CONN	Can be left unconnected
CN4.89	SD1_DATA2_iMX7_CONN	Can be left unconnected
CN4.85	SD1_DATA3_iMX7_CONN	Can be left unconnected
CN4.95	nSD1_CD_iMX7_CONN	If not used (for the
		embedded memory), tie low to
		indicate there is a card attached.

Synchronous Audio Interface (SAI)

eSOMiMX7 has 2 synchronous audio interface (SAI) interface that can support fullduplex serial interfaces with frame synchronization such as I2S and codec/DSP interfaces.

This interface covers the following sections:

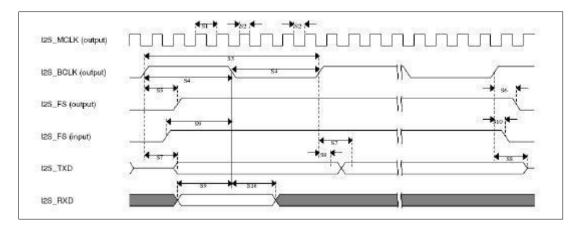
- SAI Signals
- <u>SAI interface Signals Timing Details</u>
- Unused Synchronous Audio Interface Signals Termination

SAI Signals

The following table shows the synchronous audio interface signals.

Pin	Signal Name	I/O	Power	Description
			Rail	
CN4.44	SAI1_TXD_iMX7_CONN	0	3.3V	Transmit data
CN4.46	SAI1_RXD_iMX7_CONN	I	3.3V	Receive data
CN4.48	SAI1_TXC_iMX7_CONN	I/O	3.3V	Transmit Bit Clock
CN4.50	SAI1_RXFS_iMX7_CONN	I/O	3.3V	Receive Frame Sync
CN4.52	SAI1_RXC_iMX7_CONN	I/O	3.3V	Receive Bit Clock
CN4.54	SAI1_TXFS_iMX7_CONN	I/O	3.3V	Transmit Frame Sync
CN4.58	CLK_SAI1_MCLK_iMX7_CONN	I/O	3.3V	Audio Master Clock
CN4.73	SAI2_RXD_iMX7_CONN	-	3.3V	Receive Data

Table 22: SAI Signals



CN4.75	SAI2_TXD_iMX7_CONN	0	3.3V	Transmit data
CN4.77	SAI2_TXC_iMX7_CONN	I/0	3.3V	Transmit Bit Clock
CN4.71	SAI2_FS_IMX7_CONN	I/O	3.3V	Transmit Frame Sync
CN4.55	GPIO1_IO02_IMX7_CONN	I/O	3.3V	Audio Master Clock

*SAI1 lines are muxed with NAND signals and hence cannot be used in SOMs with NAND flash.

SAI Interface Signals Timing Details

The following figures show the timing details of the SAI interface.

Figure 17: SAI Timing Diagram-MASTER Mode

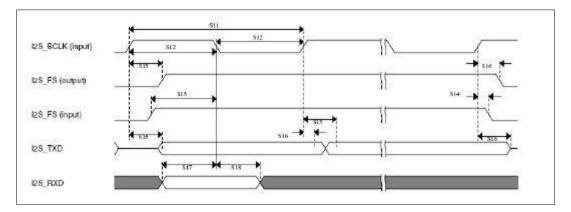


Figure 18: SAI Timing Diagram-SLAVE Mode

The following table shows the timing details of the SAI interface.

Table 23: Synchronous Audio Interface Timing Detai
--

Num	Characteristics	Min	Max	Unit
S1	SAI_MCLK cycle time	20	—	ns
S2	SAI_MCLK pulse width high/low	60%	60%	MCLK period
S3	SAI_BCLK cycle time	40	—	ns
S4	SAI_BCLK pulse width high/low	40	60	BCLK Period
S5	SAI_BCLK to SAI_FS output valid	—	15	ns
S6	SAI_BCLK to SAI_FS output invalid	0	—	ns
S7	SAI_BCLK to SAI_TXD valid	_	15	ns
S8	SAI_BCLK to SAI_TXD invalid	0	—	ns

S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	15	_	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK		—	ns
S11	SAI_BCLK cycle time (input)	40	—	ns
S12	SAI_BCLK pulse width high/low (input)	40%	60%	BCLK period
S13	SAI_FS input setup before SAI_BCLK	10	—	ns
S14	SAI_FA input hold after SAI_BCLK	2	—	ns
S15	SAI_BCLK to SAI_TXD/SAI_FS output valid	—	20%	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	—	ns
S17	SAI_RXD setup before SAI_BCLK	10	_	ns
S18	SAI_RXD hold after SAI_BCLK	2	_	ns

Unused Synchronous Audio Interface Signals Termination

All SAI signals can be left unconnected if not used.

UART Interface

In eSOMiMX7, UART supports NRZ encoding format , RS485 compatible 9 bit data format and IrDA compatible infrared slow data rate (SIR) format.It Provides Six UART lines, out of which four of it has RTS and CTS as hardware flow control along with Rx and Tx lines, while two of it supports only Rx and Tx lines.The UART includes the following features:

- High-speed TIA/EIA-232-F compatible
- Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s)
- 9-bit or Multidrop mode (RS-485) support (automatic slave address detection)
- 7 or 8 data bits for RS-232 characters, or 9-bit RS-485 format
- Hardware flow control support for request to send (RTS_B) and clear to send (CTS_B) signals
- Auto baud rate detection (up to 115.2 Kbit/s)
- RTS_B, IrDA asynchronous wake (AIRINT), receive asynchronous wake (AWAKE) interrupts wake the processor from STOP mode
- Two independent, 32-entry FIFOs for transmit and receive

The peripheral clock can be totally asynchronous with the module clock. The module clock determines baud rate. This allows frequency scaling on peripheral clock (such as during DVFS mode) while remaining the module clock frequency and baud rate.

This interface covers the following sections:

- UART Interface Signals
- UART Interface Signals Timing Details
- <u>Unused UART Interface Signals Termination</u>

UART Interface Signals

The following table shows the UART Interface signals.

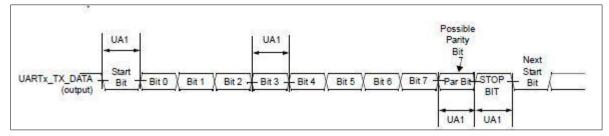
Table 24: UART Interface Signals

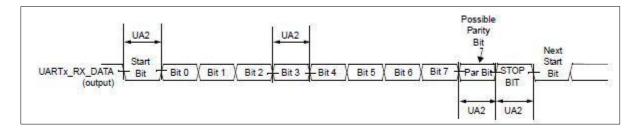
Pin	Signal Name	I/O	Power Rail	Description
CN4.68	UART1_TX_IMX7_CONN	0	1.8V	UART1 Transmitter line
CN4.64	UART1_RX_IMX7_CONN	Ι	1.8V	UART1 Receiver line
CN3.27	iMX7_LCD_ENABLE	0	1.8V	UART2 Transmitter line
CN4.66	UART2_RX_IMX7_CONN	I	1.8V	UART2 Receiver line
CN3.28	CLK_iMX7_LCD_CLK	I	1.8V	UART2 Receiver line
CN3.39	iMX7_LCD_HSYNC	Ι	1.8V	UART2 Ready to Send line
CN3.41	iMX7_LCD_VSYNC	0	1.8V	UART2 Clear to Send line
CN4.45	GPIO1_IO09_IMX7_CONN	0	1.8V	UART3 Transmitter line
CN4.62	UART3_RX_IMX7_CONN	Ι	1.8V	UART3 Receiver line
CN4.63	I2C2_DATA_IMX7_CONN	0	1.8V	UART4 Transmitter line
CN4.77	SAI2_TXC_iMX7_CONN	0	3.3V	UART4 Transmitter line
CN4.65	I2C2_CLK_IMX7_CONN	I	1.8V	UART4 Receiver line
CN4.71	SAI2_FS_iMX7_CONN	Ι	3.3V	UART4 Receiver line
CN4.75	SAI2_TXD_iMX7_CONN	Ι	3.3V	UART4 Ready to Send line
CN4.73	SAI2_RXD_iMX7_CONN	0	3.3V	UART4 Clear to Send line
CN4.59	I2C4_DATA_IMX7_CONN	0	1.8V	UART5 Transmitter line
CN4.47	GPIO1_IO07_IMX7_CONN	0	1.8V	UART5 Transmitter line
CN4.48	SAI1_TXC_iMX7_CONN	0	3.3V	UART5 Transmitter line
CN4.61	I2C4_CLK_IMX7_CONN	Ι	1.8V	UART5 Receiver line
CN4.46	SAI1_RXD_iMX7_CONN	Ι	3.3V	UART5 Receiver line
CN4.49	GPIO1_IO06_IMX7_CONN	Ι	1.8V	UART5 Receiver line
CN4.67	I2C3_DATA_IMX7_CONN	I	1.8V	UART5 Ready to Send line
CN4.44	SAI1_TXD_IMX7_CONN	I	3.3V	UART5 Ready to Send line
CN4.69	I2C3_CLK_IMX7_CONN	0	1.8V	UART5 Clear to Send line
CN4.51	GPIO1_IO04_IMX7_CONN	0	1.8V	UART5 Clear to Send line
CN4.54	SAI1_TXFS_iMX7_CONN	0	3.3V	UART5 Clear to Send line
CN4.87	SD1_DATA1_iMX7_CONN	0	VCC SD	UART7 Transmitter line
CN3.16	iMX7_CONN_QSPI_B_SCLK	0	3.3V	UART7 Transmitter line
CN4.93	SD1_DATA0_iMX7_CONN	I	VCC SD	UART7 Receiver line
CN3.6	iMX7_CONN_QSPI_B_DQS	Ι	3.3V	UART7 Receiver line
CN4.85	SD1_DATA3_iMX7_CONN	I	VCC SD	UART7 Ready to Send line
CN3.4	iMX7_CONN_QSPI_B_SS0_B	I	3.3V	UART7 Ready to Send line
CN4.89	SD1_DATA2_iMX7_CONN	0	VCC SD	UART7 Clear to Send line
CN3.12	iMX7_CONN_QSPI_B_SS1_B	0	3.3V	UART7 Clear to Send line

*SAI1 lines are muxed with NAND signals and hence cannot be used in SOMs with NAND flash.

UART Interface Signals Timing Details

The following figure shows the timing details of the UART interface-transmitter.




Figure 19: UART Timing Diagram-Transmitter

The following table shows the timing details of the UART interface-transmitter.

Table 25: UART Interface Timing-Transmitter Details

ID	Parameter	Symbol	Min	Max	Unit
UA1	Transmit Bit	tTbit	1/Fbaud_rate - Tref_clk	1/Fbaud_rate	Ι
	time			+ Tref_clk	

The following figure shows the timing details of the UART interface-receiver.

Figure 20: UART Timing Diagram-Receiver

The following table shows the timing details of the UART interface-receiver.

Table 26: UART Interface Timing-Receiver Details

ID	Parameter	Symbol	Min	Max	Unit
UA1	Receive Bit time	tRbit	1/Fbaud_rate2 - 1/(16x Fbaud_rate)	1/Fbaud_rate +1/(16 x Fbaud_rate)	—

Unused UART Interface Signals Termination

All UART signals can be left unconnected if not used.

I2C Interface

eSOMiMX7 supports three I2C ports in the connector.The inter integrated circuit (I2C) provides functionality of a standard I2C slave and master. The I2C is designed to be compatible with the standard NXP I2C bus protocol.

The I2C has the following key features:

- Multimaster operation
- Software programmability for one of 64 different serial clock frequencies
- Software-selectable acknowledge bit

- Interrupt-driven, byte-by-byte data transfer
- Arbitration-lost interrupt with automatic mode switching from master to slave
- Calling address identification interrupt
- Start and stop signal generation/detection
- Repeated Start signal generation
- Acknowledge bit generation/detection
- Bus-busy detection
- In Standard mode, I2C supports the data transfer rates up to 100 kbits/s

This interface covers the following sections:

- <u>I2C interface Signals</u>
- <u>Reference Schematics</u>
- <u>I2C interface Signals Timing Details</u>
- Unused I2C Interface Signals Termination

I2C Interface Signals

The following table shows the I2C interface signals.

Pin	Signal Name	I/O	Power Rail	Description
CN4.63	I2C2_DATA_IMX7_CONN	I/O	1.8V	I2C-2 Serial Data
CN4.47	GPIO1_IO07_IMX7_CONN	I/O	1.8V	I2C-2 Serial Data
CN4.65	I2C2_CLK_IMX7_CONN	0	1.8V	I2C-2 Serial Clock
CN4.49	GPIO1_IO06_IMX7_CONN	0	1.8V	I2C-2 Serial Clock
CN4.66	UART2_RX_IMX7_CONN	0	1.8V	I2C-2 Serial Clock
CN4.67	I2C3_DATA_IMX7_CONN	I/O	1.8V	I2C-3 Serial Data
CN3.50	LCD1_DATA21 iMX7_LCD_DATA[0:23]	I/O	1.8V	I2C-3 Serial Data
CN4.45	GPIO1_IO09_IMX7_CONN	I/O	1.8V	I2C-3 Serial Data
CN4.69	I2C3_CLK_IMX7_CONN	0	1.8V	I2C-3 Serial Clock
CN3.51	LCD1_DATA20 iMX7_LCD_DATA[0:23]	0	1.8V	I2C-3 Serial Clock
CN4.59	I2C4_DATA_IMX7_CONN	I/O	1.8V	I2C-4 Serial Data
CN4.52	SAI1_RXC_iMX7_CONN	I/O	3.3V	I2C-4 Serial Data
CN3.33	LCD1_DATA23 iMX7_LCD_DATA[0:23]	I/O	1.8V	I2C-4 Serial Data
CN4.61	I2C4_CLK_IMX7_CONN	0	1.8V	I2C-4 Serial Clock
CN4.43	GPIO1_IO10_IMX7_CONN	0	1.8V	I2C-4 Serial Clock
CN4.50	SAI1_RXFS_iMX7_CONN	0	3.3V	I2C-4 Serial Clock
CN3.47	LCD1_DATA22 iMX7_LCD_DATA[0:23]	0	1.8V	I2C-4 Serial Clock

*SAI1 lines are muxed with NAND signals and hence cannot be used in SOMs with NAND flash.

Reference Schematics

The I2C signals are of 1.8V domain, if the application requirement is of 3.3V domain an I2C level translator is required. Also, it must be noted that there are no pull ups on the I2C lines in the eSOMiMX7 and hence external pull ups are required.

The following figure shows the I2C Interface reference schematic.

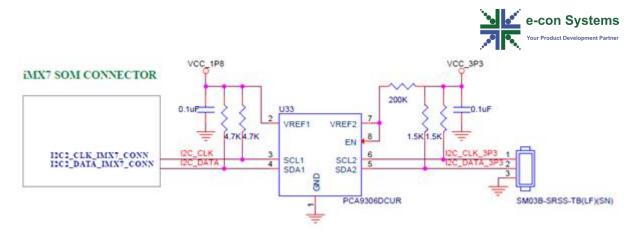
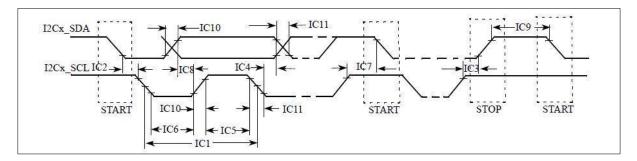



Figure 21: I2C Interface Reference Schematic

I2C Interface Signals Timing Details

The following figure shows the timing details of the I2C interface.

Figure 22: I2C Timing Diagram

The following table shows the timing details of the I2C interface.

Table 28: I2C Interface Timing D

ID	Parameter	Standar	d Mode	Fast I	Mode	Unit
		Min	Max	Min	Max	
I2C1	I2Cx_SCL cycle time	10	—	2.5		μs
12C2	Hold time (repeated) START condition	4	_	0.6	-	μs
I2C3	Set-up time for STOP condition	4	—	0.6	_	μs
I2C4	Data hold time	0^1	3.45^2	0^1	0.9^2	μs
I2C5	HIGH Period of I2Cx_SCL Clock	4	—	0.6	-	μs
12C6	LOW Period of the I2Cx_SCL Clock	4.7	—	1.3	_	μs
12C7	Set-up time for a repeated START condition	4.7	—	0.6	_	μs
12C8	Data set-up time	250	—	100^3	_	ns
I2C9	Bus free time between a STOP and START condition	4.7	-	1.3	_	μs
I2C10	Rise time of both I2Cx_SDA and I2Cx_SCL signals	-	1000	20 + 0.1Cb^4	300	ns
I2C11	Fall time of both I2Cx_SDA and I2Cx_SCL signals	—	300	20 + 0.1Cb^4	300	ns
I2C12	Capacitive load for each bus line (Cb)		400		400	pF

Unused I2C interface Signals Termination

All I2C Signals can be left unconnected if not used.

FlexCAN Interface

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification.

eSOMiMX7 has a single CAN Controller that can support data rates up to 1Mbps.The FLEXCAN module is a full implementation of the CAN protocol specification, which supports both standard and extended message frames. 64 Message Buffers are supported.

Some of the features of FlexCAN are:

- Flexible Mailboxes of eight bytes data length.
- Each Mailbox is configurable as Rx or Tx, all supporting standard and extended messages.
- Transmission abort capability.
- Backwards compatibility with previous FLEXCAN version.
- Listen only mode available.
- Programmable loop-back mode supporting self-test operation.
- Time Stamp based on 16-bit free-running timer.
- Maskable interrupts.

The operational modes are as follows:

- Functional modes
 - Normal Mode (User or Supervisor)
 - Freeze Mode
 - Listen-Only Mode
 - Loop-Back Mode
 - Module Disable Mode
 - Stop Mode
- Low Power Mode
 - Disable Mode
 - Stop Mode

This interface covers the following sections:

- <u>FlexCAN Interface Signals</u>
- <u>Reference Schematics</u>
- Unused FlexCAN Interface Signals Termination

FlexCAN Interface Signals

The following table shows the FlexCAN interface signals.

Table 29 FlexCAN Interface Signals

Pin	Signal Name	I/O	Power Rail	Description
CN4.41	GPIO1_IO12_IMX7_CONN	1	-	CAN1 Bus Receive
CN4.39	GPIO1_IO13_IMX7_CONN	0	-	CAN1 Bus Transmit
CN4.44	SAI1_TXD_iMX7_CONN	1	-	CAN2 Bus Receive
CN4.54	SAI1_TXFS_iMX7_CONN	0	-	CAN2 Bus Transmit

*SAI1 lines are muxed with NAND signals and hence cannot be used in SOMs with NAND flash.

Reference Schematics

The following figure shows the UART Interface reference schematic.

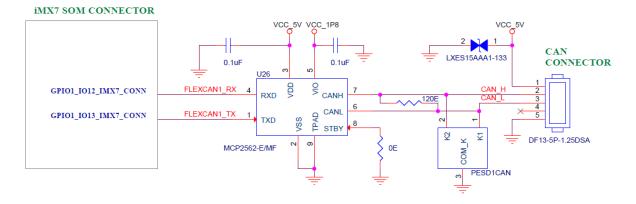


Figure 23: FlexCAN Interface Reference Schematic

Unused FlexCAN Interface Signals Termination

All FlexCAN signals can be left unconnected if not used.

Enhanced Configurable SPI Interface

eSOMiMX7 has support for 2 SPI interfaces. It is a Full-duplex, synchronous serial interface. It can be configured as both master as well as slave. Maximum operation frequency is up to the reference clock frequency of 20MHz.

The features supported are as follows:

- Full-duplex synchronous serial interface
- Master or Slave configurable
- 32-bit wide by 64-entry FIFO for both transmit and receive data
- Polarity and phase of the Chip Select (SS) and SPI Clock (SCLK) are configurable
- Direct Memory Access (DMA) supported

This interface covers the following sections:

- **ECSPI Interface Signals**
- **ECSPI Interface Signals Timing Details** •
- **Unused ECSPI Interface Signals Termination** •

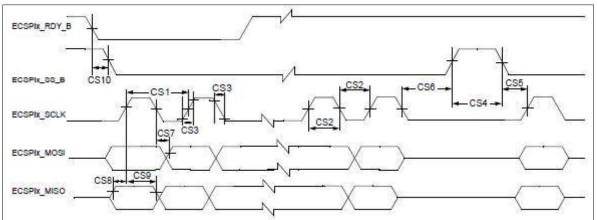
ECSPI Interface Signals

Pin

The following table shows the ECSPI interface signals.

Signal Name 1/0 Power Description Rail CN4.65 I2C2 CLK IMX7_CONN 0 1.8V SPI1 – SCLK

Table 30: ECSPI Interface Signals


entities		•	101	STIT SOEK
CN4.73	SAI2_RXD_iMX7_CONN	0	3.3V	SPI1 – SCLK
CN4.71	SAI2_FS_iMX7_CONN	0	3.3V	SPI1 – MOSI
CN4.77	SAI2_TXC_IMX7_CONN	1	3.3V	SPI1 – MOSI
CN4.63	I2C2_DATA_IMX7_CONN	0	1.8V	SPI1 – SSO
CN4.75	SAI2_TXD_iMX7_CONN	0	3.3V	SPI1 – SSO
CN4.85	SD1_DATA3_iMX7_CONN	0	VCC_SD	SPI1 – SS1
CN3.39	iMX7_LCD_HSYNC	0	1.8V	SPI2 – SCLK
CN3.28	CLK_iMX7_LCD_CLK	1	1.8V	SPI2 – MISO
CN4.95	nSD1_CD_iMX7_CONN	1	VCC_SD	SPI2 – MISO
CN3.27	iMX7_LCD_ENABLE	0	1.8V	SPI2 – MOSI
CN3.41	iMX7_LCD_VSYNC	0	1.8V	SPI2 – SSO
CN4.81	CLK_SD1_CLK_iMX7_CONN	0	VCC_SD	SPI2 – SSO
CN4.91	SD1_CMD_iMX7_CONN	0	VCC_SD	SPI2 – SS1
CN4.93	SD1_DATA0_iMX7_CONN	0	VCC_SD	SPI2 – SS2
CN4.87	SD1_DATA1_iMX7_CONN	0	VCC_SD	SPI2 – SS3
CN4.89	SD1_DATA2_iMX7_CONN	Ι	VCC_SD	SPI2 – Ready

*SAI1 lines are muxed with NAND signals and hence cannot be used in SOMs with NAND flash.

ECSPI Interface Signals Timing Details

The following figure shows the Master Mode timing details of the ECSPI interface.

Figure 24: ECSPI Timing Diagram - Master Mode

The following table shows the Master Mode timing details of the ECSPI interface.

ID	Parameter	Symbol	Min	Max	Unit
CS1	ECSPIx_SCLK Cycle Time-Read	tclk	43	-	ns
	ECSPIx_SCLK Cycle Time-Write		15		
CS2	ECSPIx_SCLK High or Low Time-Read	tSW	21.5	-	ns
	ECSPIx_SCLK High or Low Time-		7		
	Write				
CS3	ECSPIx_SCLK Rise or Fall1	tRISE/FALL	_		ns
CS4	ECSPIx_SS_B pulse width	tCSLH	Half		ns
			ECSPIx_SCLK		
			period		
CS5	ECSPIx_SS_B Lead Time (CS setup	tSCS	Half	-	ns
	time)		ECSPIx_SCLK		
			period - 4		
CS6	ECSPIx_SS_B Lag Time (CS hold time)	tHCS	Half	-	ns
			ECSPIx_SCLK		
			period - 2		
CS7	ECSPIx_MOSI Propagation Delay	tPDmosi	-1	1	ns
	(CLOAD = 20 pF)				
CS8	ECSPIx_MISO Setup Time	tSmiso	18	_	ns
CS9	ECSPIx_MISO Hold Time	tHmiso	0	_	ns
CS10	RDY to ECSPIx_SS_B Time2	tSDRY	5	_	ns

Table 31: ECSPI Interface Timing Master Mode Details

The following figure shows the Slave Mode timing details of the ECSPI interface.

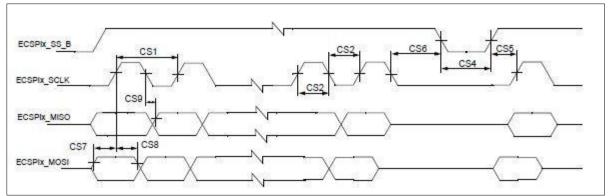


Figure 25: ECSPI Timing Diagram–Slave Mode

The following table shows the Slave Mode timing details of the ECSPI interface.

ID	Parameter	Symbol	Min	Max	Unit
CS1	ECSPIx_SCLK Cycle Time-Read	tclk	15	-	ns
	ECSPI_SCLK Cycle Time-Write		43		
CS2	ECSPIx_SCLK High or Low Time-Read	tSW	7	-	ns
	ECSPIx_SCLK High or Low Time-		21.5		
	Write				
CS4	ECSPIx_SS_B pulse width	tCSLH	Half	-	ns
			ECSPIx_SCLK		
			period		
CS5	ECSPIx_SS_B Lead Time (CS setup	tSCS	5	-	ns
	time)				
CS6	ECSPIx_SS_B Lag Time (CS hold time)	tHCS	5		ns
CS7	ECSPIx_MOSI Setup Time	tSmosi	4	1	ns
CS8	ECSPIx_MOSI Hold TimetHmosi	tHmosi	4	-	ns
CS9	ECSPIx_MISO Propagation Delay	tPDmiso	4	19	ns
	(CLOAD = 20 pF)				

Table 32: ECSPI Interface Timing Slave Mode Details

Unused ECSPI Interface Signals Termination

All ECSPI signals can be left unconnected if not used.

Quad Serial Peripheral Interface

The QSPI acts as an interface to one or two external serial flash devices, each with up to four bidirectional data lines. Two identical serial flash devices can be connected and accessed in parallel for data read operations, forming one (virtual) flash memory with doubled readout bandwidth.

This interface covers the following sections:

- **<u>QSPI Interface Signals</u>**
- Quad SPI Interface Signals Timing Details
- Unused QSPI Interface Signals Termination

QSPI Interface Signals

The following table shows the QSPI interface signals.

Table 33 QSPI Interface Signals

Pin	Signal Name	I/O	Power	Description
			Rail	
CN3.13	iMX7_CONN_QSPI_A_SCLK	0	3.3V	QSPI_A_SCLK
CN3.1	iMX7_CONN_QSPI_A_DATA0	10	3.3V	QSPI_A_DATA0
CN3.5	iMX7_CONN_QSPI_A_DATA1	10	3.3V	QSPI_A_DATA1
CN3.9	iMX7_CONN_QSPI_A_DATA2	10	3.3V	QSPI_A_DATA2
CN3.3	iMX7_CONN_QSPI_A_DATA3	10	3.3V	QSPI_A_DATA3
CN3.11	iMX7_CONN_QSPI_A_DQS	10	3.3V	QSPI_A_DQS
CN3.7	iMX7_CONN_QSPI_A_SS0_B	0	3.3V	QSPI_A_SSO_B
CN3.15	iMX7_CONN_QSPI_A_SS1_B	0	3.3V	QSPI_A_SS1_B
CN3.16	iMX7_CONN_QSPI_B_SCLK	0	3.3V	QSPI_B_SCLK
CN3.2	iMX7_CONN_QSPI_B_DATA0	10	3.3V	QSPI_B_DATA0
CN3.8	iMX7_CONN_QSPI_B_DATA1	10	3.3V	QSPI_B_DATA1
CN3.10	iMX7_CONN_QSPI_B_DATA2	10	3.3V	QSPI_B_DATA2
CN3.14	iMX7_CONN_QSPI_B_DATA3	10	3.3V	QSPI_B_DATA3
CN3.6	iMX7_CONN_QSPI_B_DQS	10	3.3V	QSPI_B_DQS
CN3.4	iMX7_CONN_QSPI_B_SS0_B	0	3.3V	QSPI_B_SSO_B
CN3.12	iMX7_CONN_QSPI_B_SS1_B	0	3.3V	QSPI_B_SS1_B

*SAI1 lines are muxed with NAND signals and hence cannot be used in SOMs with NAND flash.

Quad SPI Interface Signals Timing Details

The following figure and table shows the timing details of the Quad SPI interface.

Quad SPI Input Timing (SDR Mode)

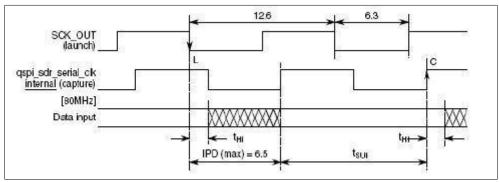


Figure 26: QSPI Timing Diagram - SDR Mode – Input

The following table shows the timing details of the Quad SPI interface.

Table 34: QSPI Interface Timing SDR Mode Input Details

Pin	Parameter	Value		Unit
		Min	Max	
TSUI	Setup time for incoming data	12.4	—	ns

Quad SPI Output Timing (SDR Mode)

The following figure shows the timing details of the Quad SPI interface.

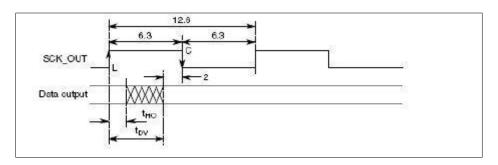


Figure 27: QSPI Timing Diagram - SDR Mode – Output

The following table shows the timing details of the Quad SPI interface.

Table 35: QSPI Interface Timing SDR Mode Output Details

Pin	Parameter	Value		Unit
		Min	Max	
TDV	Output Data Valid	-	12.4	ns
THo	Output Data Hold	4.5	—	ns

Quad SPI Timing Parameters (DDR Mode)

The following figure shows the timing details of the Quad SPI interface.

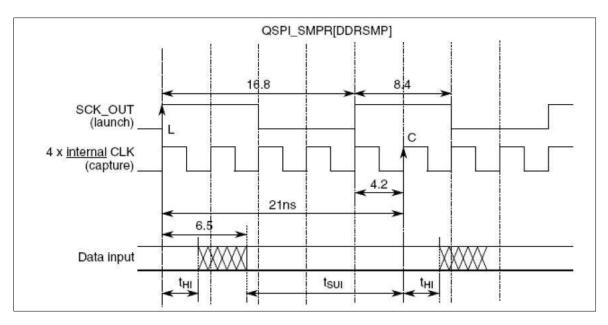


Figure 28: QSPI Timing Diagram - DDR Mode – Input

The following table shows the timing details of the Quad SPI interface.

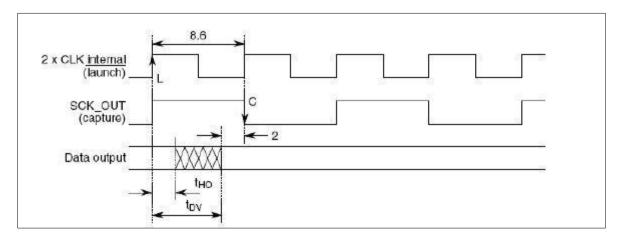


Table 36: QSPI Interface Timing DDR Mode Input Details

Parameter	Symbol	Min	Мах	Unit
Setup time for incoming data	tCLK(LCD)	14.5	-	ns
Hold time requirement for incoming data	tCLKH(LCD)	4.5	-	ns

QuadSPI Output Timing (DDR Mode)

The following figure shows the timing details of the Quad SPI interface.

Figure 29: QSPI Timing Diagram - DDR Mode – Output

The following table shows the timing details of the Quad SPI interface.

Table 37: QSPI Interface Timing DDR Mode Output Details

Parameter	Symbol	Min	Max	Unit
Output Data Valid	TDV	-	6.4	ns
Output Data Hold	THO	0.7	-	ns

Unused Quad SPI Interface Signals Termination

All Quad SPI signals can be left unconnected if not used.

Pulse Width Modulation

eSOMiMX7 has 4 Pulse Width Modulation(PWM) signals. The PWM has a 16-bit counter, it uses 16-bit resolution and a 4 x 16 data FIFO.

This interface covers the following sections:

- Pulse Width Modulation Signals
- Pulse Width Modulation Signals Timing Details
- Unused Pulse Width Modulation Signals Termination

Pulse Width Modulation Signals

The following table shows the PWM signals.

Pin	Signal Name	I/O	Туре	Power	Description
				Rail	
CN4.53	GPIO1_IO00_IMX7_CONN	0	PWM	1.8V	PWM1-OUT
CN4.45	GPIO1_IO09_IMX7_CONN	0	PWM	1.8V	PWM2 – OUT
CN4.55	GPIO1_IO02_IMX7_CONN	0	PWM	1.8V	PWM2 – OUT
CN4.43	GPIO1 IO10 IMX7 CONN	0	PWM	1.8V	PWM3 – OUT

Table 38: Pulse Width Modulation Signals

Pulse Width Modulation Signals Timing Details

The following figure shows the timing details of the Pulse Width Modulation interface.

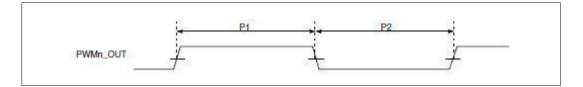


Figure 30: PWM Timing Diagram

The following table shows the timing details of the PWM interface.

Table 39: PWM Timing Details

ID	Parameter	Min	Max	Unit
	PWM Module Clock Frequency	0	24	MHz
P1	PWM output pulse width high	15		ns
P2	PWM output pulse width high	15	_	ns

Unused Pulse Width Modulation Signals Termination

All PWM signals can be left unconnected if not used.

Analog Input Signal

Analog input signal is handled by an Analog to digital converter (ADC). In eSOMiMX7 will support 8 ADC with 12-bit resolution and maximum input voltage is 1.8V. It supports conversion up to five logic groups and Support flexible 4, 8, 16, 32 number of conversion data, configurable sample time and conversion speed / power and the maximum sample rate of ADC is 1 MHz.

This interface covers the following sections:

- Analog Input Signals
- <u>Unused Analog Input Signals Termination</u>

Analog Input Signals

The following table shows the Analog input signals.

Table 40: Analog Input Signals

Pin	Signal Name	I/O	Туре	Power	Description
				Rail	
CN4.28	ADC1_IN0_IMX7_CONN	I	Analogue	1.8V	Analog input
CN4.32	ADC1_IN1_IMX7_CONN	I	Analogue	1.8V	Analog input
CN4.26	ADC1_IN2_IMX7_CONN	I	Analogue	1.8V	Analog input
CN4.30	ADC1_IN3_IMX7_CONN	I	Analogue	1.8V	Analog input
CN4.34	ADC2_IN0_IMX7_CONN	I	Analogue	1.8V	Analog input
CN4.36	ADC2_IN1_IMX7_CONN	I	Analogue	1.8V	Analog input
CN4.38	ADC2_IN2_IMX7_CONN	I	Analogue	1.8V	Analog input
CN4.40	ADC2_IN3_IMX7_CONN	I	Analogue	1.8V	Analog input

Unused Analog Input Signals Termination

The following table shows the unused Analog input signals termination.

Analog input signal Pin	Analog input signal Name	Recommended Termination
CN4.28	ADC1_IN0_IMX7_CONN	Tie to ground
CN4.32	ADC1_IN1_IMX7_CONN	Tie to ground
CN4.26	ADC1_IN2_IMX7_CONN	Tie to ground
CN4.30	ADC1_IN3_IMX7_CONN	Tie to ground
CN4.34	ADC2_IN0_IMX7_CONN	Tie to ground
CN4.36	ADC2_IN1_IMX7_CONN	Tie to ground
CN4.38	ADC2_IN2_IMX7_CONN	Tie to ground
CN4.40	ADC2_IN3_IMX7_CONN	Tie to ground

Power and Control signals

The following table shows the Power and Control signals.

Pin	Signal Name	I/0	Power	Internal	Description
			Rail	Pull up	
CN4.99	BASE_BOARD_PWR_EN	0	1.8V	10K	Carrier board power enable signal.
CN4.37	CPU_BOOT_MODE0	- 1	1.8V	10K	Boot Mode Configuration Pin 1
CN4.35	CPU_BOOT_MODE1	1	1.8V	10K	Boot Mode Configuration Pin 2
CN4.31	CPU_ONOFF	- 1	3.0	100K	CPU Power on Switch
CN4.33	CPU_POR	1	3.0	100K	CPU Reset

Table 2: Power and Control signals

Note: BASE_BOARD_PWR_EN is connected to 1.8V through a 10K Resistor.

Boot Options

eSOMiMX7 SOM uses two boot mode signals to select the boot type.

The following table lists the boot mode type selection details.

Boot Mode	Description	BOOT_MODE1	BOOT_MODE0
Boot From eFuses	In this mode, i.MX7 boot media is selected	0	0
	by GPIO eFUSE settings		
Serial	In this mode, i.MX7 boot device can be	0	1
Downloader	programmed through its USB OTG		
Mode	interface using MFG Tool		
Internal Boot	In this mode, i.MX7 boot media is selected	1	0
Mode (Default)	by GPIO Pin's settings		
Reserved	Not allowed to use this mode	1	1

Table 43: Boot mode type selection

Note:

- 1 Pin need to be connected to logic high
- 0 Pin need to be connected to logic low

CPU ONOFF

CPU_ONOFF has an internal Pull up to 3.0V. CPU_ONOFF signal is used to switch on and off the system. Can be connected to a push button. Short connection to GND in OFF mode causes internal power management state machine to change state to ON. In ON mode short connection to GND generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND causes "forced" OFF. If not used, CPU_ONOFF can be left unconnected.

Power on Sequence

The power on sequence begins with the VCC_3P3_IN supply to the SOM, this is the first and foremost supply given to the SOM. After the completion of internal power on sequence in the SOM, the BASE_BOARD_PWR_EN signal is pulled high. Only after this the Base board supplies must be powered ON. It is mandatory to follow this sequence to ensure the proper working of all the peripherals.

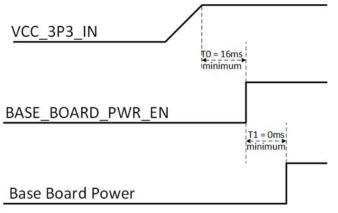
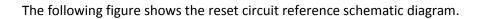



Figure 11: Power on Sequence

CPU Reset

The following reset circuit is recommended in order to perform a software initiated reset or to perform a watchdog initiated reset. In the case of watchdog reset, the GPIO1_IO00_IMX7_CONN must be used under ALT3_WDOG1_WDOG_B mux option to control POR.

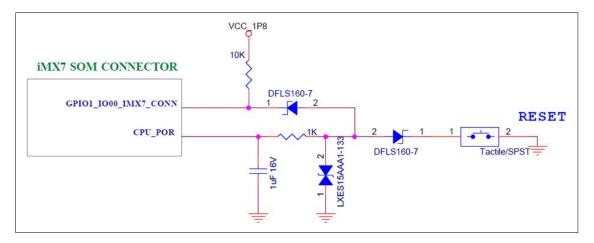


Figure 32: Reset Circuit Reference Schematic Diagram

What's Next?

After understanding the designing concept of the carrier board, you can refer to the following documents from the Developer Resources website to understand more about the eSOMiMX7.

- eSOMiMX7 Datasheet
- Evaluation Board Schematics
- PinMUX Detail

ADC: Analogue to Digital Converter.

Auto-MDIX: Automatically Medium Dependent Interface Crossing, a PHY with Auto-MDIX f can detect whether RX and TX need to be crossed (MDI or MDIX).

CAN: Controller Area Network, a bus that is manly used in automotive and industrial environment.

CDMA: Code Division Multiple Access, abbreviation often used for a mobile phone standard for data communication.

CPU: Central Processor Unit.

CSI: Camera Serial Interface.

DAC: Digital to Analogue Converter.

DSI: Display Serial Interface.

EMI: Electromagnetic Interference, high frequency disturbances.

eMMC: Embedded Multi Media Card, flash memory combined with MMC interface controller in a BGA package, used as internal flash memory.

ESD: Electrostatic Discharge, high voltage spike or spark that can damage electrostatic- sensitive devices.

GBE: Gigabit Ethernet, Ethernet interface with a maximum data rate of 1000Mbit/s.

GND: Ground.

GPIO: General Purpose Input/Output, pin that can be configured being an input or output.

GSM: Global System for Mobile Communications.

HDMI: High-Definition Multimedia Interface, combines audio and video signal for connecting monitors, TV sets or Projectors, electrical compatible with DVI-D.

I²C: Inter-Integrated Circuit, two wire interfaces for connecting low-speed peripherals.

I²**S:** Integrated Interchip Sound, serial bus for connecting PCM audio data between two devices.

IrDA: Infrared Data Association, infrared interface for connecting peripherals.

JTAG: Joint Test Action Group, widely used debug interface.

LCD: Liquid Crystal Display.

LSB: Least Significant Bit.

LVDS: Low-Voltage Differential Signaling, electrical interface standard that can transport very high-speed signals over twisted-pair cables. Many interfaces like PCIe or SATA use this interface. Since the first successful application was the Flat Panel Display Link, LVDS became a synonymous for this interface. In this document, the term LVDS is used for the FPD-Link interface.

MIPI: Mobile Industry Processor Interface Alliance.

MDIX: Medium Dependent Interface Crossed, an MDI interface with crossed RX and TX interfaces.

mini PCIe: PCI Express Mini Card, card form factor for internal peripherals. The interface features PCIe and USB 2.0 connectivity.

MMC: MultiMedia Card, flash memory card.

MSB: Most Significant Bit.

N/A: Not Available.

N/C: Not Connected.

OD: Open Drain.

OTG: USB On-The-Go, a USB host interface that can also act as USB client when connected to another host interface.

OWR: One Wire (1-Wire), low-speed interface which needs just one data wire plus ground.

PCB: Printed Circuit Board.

PCI: Peripheral Component Interconnect, parallel computer expansion bus for connecting peripherals.

PCIe: PCI Express, high-speed serial computer expansion bus, replaces the PCI bus.

PCM: Pulse-Code Modulation, digitally representation of analogue signals, standard interface for digital audio.

PD: Pull-Down Resistor.

PHY: Physical Layer of the OSI model.

PMIC: Power Management IC, integrated circuit that manages amongst others the power sequence of a system.

PU: Pull-up Resistor.

PWM: Pulse-Width Modulation.

RGB: Red Green Blue, color channels in common display interfaces.

RJ45: Registered Jack, common name for the 8P8C modular connector that is used for Ethernet wiring.

RS232: Single ended serial port interface.

RS422: Differential Signaling serial port interface, full duplex.

RS485: Differential Signaling serial port interface, half duplex, multi drop configuration possible.

S/PDIF: Sony/Philips Digital Interconnect Format, optical or coaxial interface for audio signals.

SD: Secure Digital, flash memory card.

SIM: Subscriber Identification Module, identification card for GSM phones.

SoC: System on a Chip, IC which integrates the main component of a computer on a single chip.

SPI: Serial Peripheral Interface Bus, synchronous four wire full duplex bus for peripherals.

TMDS: Transition-Minimized Differential Signaling, serial high-speed transmitting technology that is used by DVI and HDMI.

TVS Diode: Transient-Voltage-Suppression Diode, diode that is used to protect interfaces against voltage spikes.

UART: Universal Asynchronous Receiver/Transmitter, serial interface, in combination with a transceiver a RS232, RS422, RS485, IrDA or similar interface can be achieved.

USB: Universal Serial Bus, serial interface for internal and external peripherals.

VCC: Positive supply voltage.

Contact Us

If you need any support on eSOMiMX7 product, please contact us using the Live Chat option available on our website - <u>https://www.e-consystems.com/</u>

Creating a Ticket

If you need to create a ticket for any type of issue, please visit the ticketing page on our website - <u>https://www.e-consystems.com/create-ticket.asp</u>

RMA

To know about our Return Material Authorization (RMA) policy, please visit the RMA Policy page on our website - <u>https://www.e-consystems.com/RMA-Policy.asp</u>

General Product Warranty Terms

To know about our General Product Warranty Terms, please visit the General Warranty Terms page on our website - <u>https://www.e-</u> <u>consystems.com/warranty.asp</u>

Revision History

Rev	Date	Description	Author
1.0	02-05-2018	Initial Draft	HW Team