
@pcarrier

Embracing the

power of GraphQL
Pierre Carrier (pierre@meteor.com), MDG (meteor.io)

GraphQL Toronto, 2017-07-10

mailto:pierre@meteor.com
http://meteor.io

@pcarrier

GraphQL @ MDG

• Apollo clients (web, iOS, Android)

• Apollo Developer Tools

• graphql-tools, graphql-server

• Launchpad

• Optics

• Articles & (better) talks

@pcarrier

Hiring in Toronto
pierre@meteor.com

mailto:pierre@meteor.com

@pcarrier

My background

Tech support @ Red Hat

SRE @ Spotify, Airbnb

Software engineer @ Twitter (Core Storage)

Core Engineer @ MDG (Apollo)

@pcarrier

I (candidly) speak

for myself!

@pcarrier

My GraphQL story

First introduced when interviewing for MDG (Oct 2015).

Took months to feel truly comfortable.

Part of the team that built Optics in 2016, more to come.

Current understanding from March 2017. It helped to work full time on tooling.

@pcarrier

GraphQL is a spec, not code
1. Overview

2. Language

3. Type System

4. Introspection

5. Validation

6. Execution

7. Response

A. Appendix: Notation Conventions

B. Appendix: Grammar Summary

@pcarrier

Confusing terminology
A request refers to:

• A query document

• Named fragments

• Either:

• One or more named operation(s): query, mutation, subscription, etc.

• One anonymous operation (query if type unspecified)

• Optionally, an operation name

• Optionally, variable values (Map<String, Any>)

@pcarrier

Query language

• Describe what you want, get it back.

• Independent of transport.

• Independent of encoding (needs JSON/+, ordering).

• No inherent overhead:

• No need to transmit the query document on the wire.

• Parsing and validation can trivially be cached.

• Execution could be compiled (AOT or JIT).

@pcarrier

Schemas are great

• SQL schemas are about the structure of the data.

• GraphQL schemas are both data model and API.

• Introspection is baked in every schema per specification.  
Tools can offer static analysis, autocompletion, etc. as mere clients.

• Use the IDL as a living document. Treat it like a contract and amend it as such.

@pcarrier

Schema first

• Model features into API.

• Open a PR that changes the IDL. Backend CI goes red.

• In parallel:

• Mock and build frontend

• Iterate on backend until CI goes green.

• Stage. Ship. Rinse and repeat.

@pcarrier

Backwards compatibility is hard

• Very few operations are backwards compatible:

• Add new types

• Add fields to existing types

• Add nullable parameters

• Wrap field types in NonNull

• (Arguably) Add implementations on interfaces and types in union

• Use Optics? :)

@pcarrier

Great tooling

• Given an endpoint, we know the schema.

• Given a query and the schema, we know the exact shape of the response.

• GraphiQL was The Killer App. IDE support is emerging and unequal.

• https://apis.guru/graphql-voyager/ is fun.

• Code generation increasingly accessible. Great for clients. Less clear to me for servers.

• GraphQL doesn't require a client library, but they help. A lot.

https://apis.guru/graphql-voyager/

@pcarrier

A few common topics
• Authentication

• We don't think it should be GraphQL-specific.

• Many modern authentication systems involve HTTP flows (eg OAuth).

• Authorization

• Cannot think of endpoints anymore. It's about edge traversal.

• Thanks to explicit mutation APIs and field accesses, Role-Based Access Control is a breeze.

• Real-time updates

• I don't think we have the right solution yet. Subscriptions are usually not the right answer.

• Luckily much of GraphQL is not tied to request/reply.

@pcarrier

Custom scalars are needed

• Few standard scalar types (Int, Float, String, Boolean, ID). 
Community could use more uniformity and/or declarative encoding for scalars, eg:

• Nothing;

• Timestamps;

• Blobs;

• Arbitrary JSON values(?).

• Weak numerical tower (no specific “signedness” nor precision, no range constraints,
etc.).

@pcarrier

The type system is limited

• No generics. We get List<User>, but cannot build PaginatedList<User>.

• No identity for object types (nor standard mechanism to lookup objects directly).

• Flat namespace.

• Parameters are hard to specify (neither abstract types nor constraints between
parameters).

• No error taxonomy (eg transient vs permanent, 403 vs 404 vs 500), no contract on
error sources.

@pcarrier

Misc. limitations

• Selection sets cannot be empty.

• Execution is a pure “top-bottom” traversal, no dependencies between subtrees.

• Cannot generally mix query and mutation operations.

• Cannot explode arrays. If we can only look up one user at a time (eg
user(id:ID!):User) and want to read N users at once, we must use multiple
queries or a “dynamic” query, eg: 
query ReadMultipleLastNames { 
 u1: user(id:"pcarrier") { lastName } 
 u2: user(id:"xav_cz") { lastName } 
}

@pcarrier

Mutations: bolted on?

• Only the top-level selection set of a mutation is executed serially, which encourages a
flat mutation space. Clients allowing, expose a hierarchy of mutations, and handle
constraints on execution order yourself.

• The only maintainable way to keep some isolation between “mutation types” and
“query types” is to:

• Discriminate between them (through naming or directives),

• Have fields of mutation types be either, but fields of “query types” never be
“mutation” types.

@pcarrier

I wish we could
mutation AttendMyOwnTalks { 
 query { ← Mutations and queries cannot be mixed-and-matched out-of-the-box 
 me { id @as($myId) } 
 meetup(id: "graphql-toronto") { 
 talks(author: $myId) @as($events) { id title startTime endTime }
 ↑ Cannot use bits of the response as parameters 
 } 
 } 
 #each($event:$events) { ← Cannot explode arrays
 rsvp(coming: YES, eventId: $event{id}) ← Must have non-empty selection set if an object
 ↓ No namespacing
 calendar.google.com/myCalendar {
 upsertEvent(name: $event{title}, ← Mutations are intended to be "flat"
 from: $event{startTime},
 to: $event{endTime}) 
 } 
 } 
}

@pcarrier

Q&A

